
CReDo Technical Report 4: 
Modelling system impact

March 2022



The Climate Resilience Demonstrator, CReDo, is a climate change adaptation
digital twin demonstrator project developed by the National Digital Twin programme
to improve resilience across infrastructure networks.

CReDo is a pioneering project to develop, for the first time in the UK, a digital twin across infras-
tructure networks to provide a practical example of how connected-data and greater access to
the right information can improve climate adaptation and resilience. CReDo is the pilot project
for the National Digital Twin programme demonstrating how it is possible to connect up datasets
across organisations and deliver both private and public good.

Enabled by funding from UKRI, The University of Cambridge and Connected Places Catapult,
CReDo looks specifically at the impact of extreme weather, in particular flooding, on energy, water
and telecoms networks. CReDo brings together asset datasets, flood datasets, asset failure
models and a system impact model to provide insights into infrastructure interdependencies and
how they would be impacted under future climate change flooding scenarios. The vision for the
CReDo digital twin is to enable asset owners, regulators and policymakers to collaborate using
the CReDo digital twin to make decisions which maximise resilience across the infrastructure
system rather than from a single sector point of view.

CReDo’s purpose is two-fold:

1. To demonstrate the benefits of using connected digital twins to increase resilience and en-
able climate change adaptation and mitigation.

2. To demonstrate how principled information management enables digital twins and datasets
to be connected in a scalable way as part of the development of the information manage-
ment framework (IMF).1

This first phase of CReDo running over the period April 2021 to March 2022 has focused on
delivering a minimum viable product to bring the datasets together to offer insight into infrastruc-
ture interdependencies and system impact. Separate technical papers have been produced to
describe each stage of the project so far:

CReDo Technical Paper 1: Building a cross sector digital twin

CReDo Technical Paper 2: Generating flood data

CReDo Technical Paper 3: Assessing asset failure

CReDo Technical Paper 4: Modelling system impact

CReDo Technical Paper 5: CReDo and the Information Management Framework

The technical papers are nested under the CReDo Overview report, and all CReDo reports and
related materials can be found on the Digital Twin Hub, https://digitaltwinhub.co.uk/projects/credo.

1IMF - DT Hub Community (digitaltwinhub.co.uk)
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Summary

In this report, we present the efforts to understand the impact of an inclement weather situation
within a network. The network connectivity and the fault propagation is assessed for one network
at a time; and then complemented with a propagation across networks. The modelling done for
this demonstrator is a connectivity model which considers the dependencies between sites in a
network.

The connectivity models assess the faults in each individual network—power, water and telecom-
munications.
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1 Introduction

1.1 Understanding dependencies
This paper describes the work done on the understanding of infrastructure interdependencies
and impact on the overall system.

The work on the model described in this report started in September 2021. Access to the data
was given at the end of October 2021 and the technical work ran until Mid-January 2022. The
work was led by Lars Schewe and primarily carried out by Mariel Reyes Salazar. The integration
of the multiple different networks was carried out by Maksims Abal,enkovs.

We demonstrated that we can integrate the data from a digital twin into component networks
models and could connect these with an overarching coordinating algorithm. This allows us
to propagate failures in the networks and then analyse the impacts on the different networks.
The observed runtimes for the test networks indicate that the implemented methods will work on
realistic networks and that implementing more complex models is feasible in follow-up projects.
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2 Overview

The technical work planned in the work package was to model each of the com-
ponent networks, build models that allow to propagate failures through each of
them, and propose methods to propagate the failures between them.

To structure the work, we proposed three levels of detail for the network models and two levels
for the integration. In addition, the objective functions for the underlying optimization problems
were to be developed.

Due to unavailability of data and the short timescale, it was decided to focus on the first levels for
all networks and the integration. As no data was available that could guide the definition of an
objective function, this work was not undertaken.

The basic models were implemented in Python and tested on a small-scale model of part of a
UK town. This allowed us to demonstrate that the overall methodology is sound, that data from a
digital twin can be transferred to more detailed network models and that the results can be played
back to the digital twin.

2.1 Network models
To model the different networks, four levels were proposed:

• basic graph connectivity analysis;
• linear network flow analysis;
• stationary physical models;
• time-dependent physical models.

The first two levels were chosen as they did not require consideration of the specifics of the
networks, but could already give a basic understanding of the impact and possible recovery
actions.

To give an example of the different hierarchy levels, we consider the example of freshwater net-
works. For the finest level, the models described in [1] form a good starting point. The advan-
tage of these models is that the same mathematical techniques can be applied to, e.g., sewage
networks [2]. The idea is to model the network with a directed graph, so that each pipe and con-
trollable element is an arc in this graph. The flow along each pipe is described by a conservation
law. In the case of freshwater networks, the commonly used set of equations is known as the
waterhammer equations. Other elements, for instance, pumps are described by algebraic equa-
tions. The nodes of the network correspond to water sources, demand zones, and reservoirs. To
model the connectivity, we make sure that mass is conserved at nodes.

These models lead to mixed-integer optimal control problems, which are, in general, too challeng-
ing to solve in practice. Hence, the next simplification step is to disregard the time dependency.
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In our case, this allows to replace the difficult conservation law with an algebraic equation, which
is known as the Hazen-Williams equation. The mixed-integer nonlinear optimization problems
arising from these are still very challenging. The next simplification step is to linearize the non-
linearity. A very simple version of this is just to limit the amount of flow along each pipe and
just retain conservation of mass on the nodes. All the models so far, require that basic physical
parameters of the network are known. For instance, it is necessary to know the diameter of the
pipes to obtain a reasonable network model.

The last model disregards all physical information of the model and consists only of the network
graph and keeps the node types for information. In this model, the only information that remains
is connectivitiy. The core query is: Is a demand zone still connected to any water source? This
is a purely qualitative question, no regard is given to the amount of water that the connected
sources can provide or the amount of water needed in the demand zone.

In this report, we describe this model in more detail:

The network is given as a directed graph G = (N,A) with nodes N and arcs A. Note that we are
allowing parallel arcs. Furthermore, we have a list of supply nodes S ⊆ N and demand nodes
T ⊆ N . The type of nodes marked as supply or demand depend on the specific network. They
might be literal supply nodes, for instance, for fresh water. They might also be connections to an
external network, for instance to the GB electrical grid.

Faults on the network are given by a list of flooded nodes FN ⊆ N and arcs FA ⊆ A.

The basic fault propagation model removes the nodes FN and the arcs FA from G to obtain a
graph Ḡ.

The output is the set of all nodes that are either element of FN or are no longer reachable from
supply nodes in Ḡ.

The best algorithm to do this depends on the specifics of the network. In general, the Floyd-
Warshall algorithm [(]see, for example)[]netflows can be used to compute the transitive closure
of the graph, from which the output can be directly read. The drawback of this algorithm is,
however, its worst-case running time of O(N3).

However, typical networks are not general graphs. They are typicalyl sparse, that is, they contain
few arcs and only few sources (or few sinks) compared to the total number of nodes. In either of
these cases, using a depth- or breadth-first-search starting from the sources is a faster option.
Algorithms with a faster theoretical running time have been proposed for more restricted graph
class, but we did not consider these algorithms here.

In our given data, supply and demand nodes were not consistently identifiable. Hence, we used
a slightly different output definition than the one given above: we are only considering flooded
nodes FN and we output all nodes that are reachable from a flooded node. This means that in
our case, one pass of a depth- or breadth-first search type algorithm is enough to identify the
affected nodes (see Section 3.5).
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2.2 Decision support and objectives
The goal of CReDo is to provide decision support to the asset owners and other stakeholders.
For the first phase of CReDo we chose the one problem as our guiding question: How do we
identify those assets that need to be repaired or replaced first in a flood scenario? Due to time
and data constraints, we only modelled the basic question and did not implement a full model.

The core situation we chose to model was that the asset owner can only repair a given number
of assets and needs to choose which assets to prioritize. We did not consider refinements of the
question, for instance, how to deal with assets whose status is unknown because they have lost
communications.

To measure the quality of possible options, we will need to introduce objective functions. These
will allow us to compare different decisions. In the discussions with asset owners, we identified
two promising candidates for further investigation. For both, we did not have enough data to
implement them in this iteration of CReDo:

1. Number of households supplied by the network
2. Total “importance” of the supplied nodes in the network.

The first quantity is straightforward to compute given available data. It allows us to prioritize the
actions that re-establish service for the most people in the shortest time. It has short-comings:
High-priority assets, like hospitals, might be undervalued as their importance cannot be ex-
pressed just by the number of directly impacted people. Hence, it was suggested to come up
with a more tailored objective that allows for a higher weighting of these high-priority assets. As
the data was not available and would be highly sensitive, we did not pursue this further in this
iteration of CReDo.

We discuss one possible simple model for this question in Section 4.

2.3 Integrating the networks
As the network models we used were all identical due to data constraints, we could use the inte-
gration algorithm for a single network also for the propagating the failures between networks. To
keep the structure modular, it was nevertheless implemented as a separate part (see Section 3.5).
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3 Implementation

In this section we define the approach taken for modelling the network sites, the
technology used in this demonstrator and present the implementation workflow.

While the models discussed in the previous section are easy to write down, the focus of CReDo
was that models like this can actually be implemented for real networks. Hence, most of the work
in this work package was spent on the implementation. This section discusses the details of the
implementation.

The implementation was done in Python 3.8 [3] running in a Podman container [4]. This allowed
us to react quickly to changing requirements and deploy the resulting package safely.

Two Python packages were used to provide the core functionality of the software:

• NetworkX [5] for graph representation and graph algorithms;
• Pandas [6, 7] for providing tabular data storage.

3.1 Data review
The data used by the OR module is obtained from text files that are exported from the Knowl-
edge Graph [8], and further modified by the Expert Elicitation models [9], which update the asset
statuses using Bayesian network models. Each subnetwork’s assets and connections are stored
in text files. The data used are stored in eight different JSON files for each subnetwork of each
asset type.

The asset networks, and their subnetworks are the following:

1. Power network

(a) Primary substations
(b) Secondary substations

2. Telecommunications network

(a) Cabinets
(b) Exchange nodes
(c) Mobile masts

3. Water network

(a) Sewage sites
(b) Sludge site
(c) Water sites

The sludge site is a single water treatment site in the area of interest and, as such, it is an isolated
element in the whole network.
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As previously noted, the main information that was accessible to us was the connectivity informa-
tion: which assets are connected to each other? Furthermore, it was not consistently possible to
extract the property of being a node that is a supply node for, for instance, water or the property
of being a demand node. Hence, we opted to use a graph theoretic notion: we assumed a node
is a supply node, if it only has outgoing arcs and a demand node if it only has ingoing arcs.

Other information about the physical connection types and so on, was not accessible. This pre-
vented us from using more detailed models of the networks that would have allowed us to capture
the specifics of the different asset classes.

3.2 Network recreation
The implementation developed for this demonstrator first reads the plain text files from the Knowl-
edge Graph for each asset and recreates the networks following these steps:

1. Read the input data;
2. Extract information on assets and their connections;
3. Build the network.

Reading input data

In this step, the input files are read together and decoded for pre-processing in the next steps of
the workflow. The input files are stored in a data structure that distinguishes between the type of
site information each file contains. For instance, the primary and secondary substation files are
marked as power sites2.

Extracting information on assets and their connections

This step uses the input data that were previously decoded, and obtains the following properties
from each site in the asset files

Site information

• Site ID: The asset identifier used by the asset owners
• State: A boolean flag which defines whether the site is operational (live, online) or not
• IRI: The asset identifier used by the Knowledge Graph
• Subnetwork: The asset subnetwork, e.g., exchange, primary, sewage.

In addition to these properties, the logic implemented initialises the following properties for each
site:

• is_sink: A binary flag which defines whether the site is a sink in the network. Initialised with
a value of 0.

2This process relies on three environment variables in the code implementation on the DAFNI platform that hold the
file names of the asset data:
BT_FILES=cabinetmeta.json,exchangemeta.json,mobile_mastmeta.json
UKPN_FILES=primary_substationmeta.json,secondary_substationmeta.json
AW_FILES=sewage_sitemeta.json,water_sitemeta.json
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• is_source: A binary flag which defines whether the site is a source in the network. Initialised
with a value of 0.

To find the site connections (network arcs), the following information is gathered from the input
files:

Site connections

• Site ID: The site identifier used by the asset owners
• Supplied by: A list of sites which are supplied a flow to this site
• Supplies to: A list of sites which this site supplies a flow to

Using the “Supplied by" and “Supplies to" connection properties, two lists are generated:

• sink_list: A list of sites that this particular site supplies to. Uses the “Supplies to" property.
• source_list: A list of sites that this particular site receives flow from. Uses the “Supplied by"

property.

The following pseudocode presents the logic developed for obtaining the site connections.

Pseudocode: Site connections logic
Input: Site data
Output: sink_list, source_list

1 Initialise sink_list = [empty list], source_list = [empty list]
2 for site in sites do

/* Get the connections, if any */

3 if "Connections" ̸= ∅ then
/* Find the "Supplied by" sites - sources of this site */

4 if "Supplied by" ̸= ∅ then
5 for source in “Supplied by" do
6 source_list.add(source)

/* Find the "Supplies to" sites - sinks of this site */

7 if "Supplies to" ̸= ∅ then
8 for sink in “Supplies to" do
9 sink_list.add(sink)

10 else
/* This site does not have any connection */

11 continue

The sink_list and source_list entities are used for building the arcs in the network and used for
finding if the site is a sink or a source.

The logic implemented for finding whether a site is a sink or a source is detailed in the following
pseudocode. The logic overwrites the initialised values of the is_sink and is_source flags, if
applicable.
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Pseudocode: Sink and source logic
Input: sink_list, source_list
Output: is_sink, is_source flags

1 for site in sites do
/* A sink is a site with incoming connections only */

2 if source_list ̸= ∅ AND sink_list = ∅ then
3 is_sink = 1

/* A source is a site with outgoing connections only */

4 if sink_list ̸= ∅ AND source_list = ∅ then
5 is_source = 1

Consolidation of network data

The site information and the site connections are stored in two different pandas dataframes.
A dataframe is a two-dimensional tabular data structure with labelled axes (rows and columns).
The reason for using this data structure is due to its simplicity to handle data in a table-like format,
where each row represents a site.

Tables 1 and 2 show a schematic example of the site information and the site connection dataframes,
respectively.

Table 1: Schematic of the site information dataframe

Site ID State IRI is_sink is_source subnetwork
Site1234 True http://KnowledgeGraph/Site1234/sewageState 0 0 sewage

Table 2: Schematic of the site connection dataframe

Site ID sources sinks
Site1234 [a list of sites] [a list of sites]

Network arcs

The site connection dataframe is only a precursor, as its purpose was only to extract the connec-
tions information from the input data. This dataframe will be used for preparing the connections
in a format that is useful for the network building stage. The sink_list and source_list of each site
are expanded into pairs of (source, sink) sites.

Each pair has the following new properties:

• Arc ID: A numeric identifier for each arc.
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• Arc weight: A weight associated with each arc. This weight can be interpreted as a prior-
ity. The priority can be defined in terms of users, the sites this arc connects, or if the arc
distributes an important flow to a certain building or facility, among other criteria which an
asset owner may set.

Finally, the source–sink pairs along with their properties are stored in a new dataframe called
arcs. This is the dataframe that will be used for the network building. Table 3 offers a schematic
example of the arcs dataframe.

Table 3: Schematic of the network arcs dataframe

Arc ID Source Sink Arc weight
123 Site123 Site124 1

Building the network

Prior to building the network objects, all individual subnetworks are concatenated into three large
sets of networks—power, telecommunications and water. This approach gives a more adequate
vision of the connections between subnetworks (i.e. consider a single network of certain asset
type). For instance, a primary power station may supply electricity to a secondary substation.

The network built for this implementation is a NetworkX directed graph. The functions developed
earlier prepare the graph for receiving the sites and the directed arcs.

The network graph object obtains the site properties associated with each node, i.e. Site ID, IRI,
is_sink, is_source and state.

The entire network is generated at this stage. It contains all the sites and arcs from the input
files produced by the knowledge graph. This network does not consider the asset statuses,
as this network object represents the entire network in its initial state (with all assets and their
connections present and online).

3.3 Network update
After the network objects are built, it is required to update the networks now taking into account
the site statuses, and propagating failures to dependent sites. The statuses are read from the
input JSON files. These statuses come from the Expert Elicitation model stage [9].

The network update stage obtains a subgraph of the original networks, by only obtaining the sites
that remain in the networks which have a true status (i.e. the asset is operating) with failure prop-
agation implemented using a breadth- or depth-first search algorithm as discussed in Section 3.5.
The list of lost sites is then computed using standard database operations.

The list of lost sites is exported in the CSV format by outputting only the IRI and its status. This
file will be consumed by the knowledge graph and update the networks to show the operating
and the non-operating sites accordingly.
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This completes the workflow of the connectivity analysis to be added to the minimum-viable-
product.

3.4 Single network implementation
We summarize the overall workflow in Figure 1. First the asset files from the knowledge graph
are read and, in a second step, the network representations are built (see Section 3.2). Then the
flooded assets are identified and removed from the network (see Section 3.3). The final step is
to write the lost assets to a file for processing by the knowledge graph.

Figure 1: Implementation flowchart of the connectivity analysis for individual networks

3.5 Fault propagation
Fault propagation is a process of gradual expansion of faults over the entire network. A fault in 
this context is an asset that was affected by severe climate conditions and therefore went offline. 
The task of fault propagation is to analyse the entire network and take offline all the assets that 
are connected to faulty assets. This chapter builds upon the approach described in Sections 3.1 
to 3.4 and extends it to fault propagation across multi-type asset networks.

3.51 Mathematical models

The network of assets is represented by a directed graph. The assets are vertices of the graph. 
The source–sink type of connections between the assets are the edges of the graph. Propagation 
of faults over the network requires processing of all vertices of the graph. Mathematically, this 
task can be described in terms of a depth-first search algorithm [10].
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In case of a depth-first search the vertices are usually stored in a  data s tructure. The algorithm 
takes one element from this data structure and analyses it and its direct successors for faults. 
The classical data structures selected for this purpose include trees and queues. Once there is 
a need to process a queue, a producer–consumer model comes to mind.

Therefore, the mathematical model of fault propagation may be complemented by the producer–
consumer relationship [11]. The Initial producer will be the CReDo flood model that highlights, 
what assets were affected. At the execution time the fault propagator algorithm itself will act as 
a con-sumer and also as a producer of more elements to be processed.

3.52 Algorithms

There are two ways to propagate faults over the network of assets. A simple approach is to 
consider each asset type separately and generate a corresponding graph for this particular type 
of assets. In the end there will be three graphs containing power, telecommunications and sewage 
assets. The second, more advanced approach considers all assets simultaneously and 
generates one global graph with multi-type vertices and edges.

Single type 
This type of algorithm describes the key steps of the graph generation process. An 
empty digraph is created for each asset type t, then the algorithm parses all available Json 
files F looking for assets of a given type t. This search is split into two stages: (a) finding and 
populating the graph with vertices and (b) finding and populating the graph with edges. Finally, 
the graph g is saved into a Bzip2-compressed file.

Pseudocode: Graph generator
Data: Json files F , asset types T
Result: Digraphs G

1 foreach asset type t ∈ T do
2 initialise digraph g;
3 foreach Json file f ∈ F do
4 add_vertices(g, f );
5 add_edges(g, f );
6 pbz2_save(g);

The algorithm below illustrates all the main steps of fault propagation. At first, a  d igraph g  for 
a particular asset type t is loaded from a Bzip2-compressed file f . Then the algorithm enters 
into its first stage: detecting flooded vertices. If vertex u is flooded, all of its other states; 
power, telecommunications and sewage, automatically flip to false. Then vertex u may have 
neighbour vertices or successors, directly connected to u. The flooding of u will affect all of its 
successors. Therefore, u is stored in a set F for further processing.

The second stage deals with vertices in the set F . The while loop proceeds until the set F is not 
empty, i.e. it still has vertices to process. The first vertex u is popped from F .  Its successors are 
analysed in the following loop. States of successor v are flipped to false, because v is affected by 
a flood at u . Consequently, the edge (u, v) connecting u to v is also affected. It should be removed
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from the digraph. Next, it’s time to pay a closer look at v and check whether it is isolated, i.e. its in
and out degree is 0 (it has no more edges and is not connected to any other vertex in the graph).
It is not supplied by anything and does not supply anything to anyone else. Therefore, it should
also be removed from the digraph. Otherwise, it still has edges and is still connected to other
vertices, it will be added to the end of set F for further processing. Finally, after all successors of
u were processed it is time to ask, whether u itself is isolated. If it is, then it can be safely 
removed from the graph.

Pseudocode: Fault propagator
1 foreach asset type t in T do
2 load digraph g from file f ;

/* Detect flooded vertices */
3 foreach vertex u ∈ g do
4 if u is flooded then
5 set ∀ states(u) := False;
6 save F ← u;

/* Process flooded vertices */
7 while F is not empty do
8 pop u← F ;
9 foreach successor v of g(u) do

10 states(v) := False;
11 remove edge (u, v) from g;
12 if v is isolated then
13 remove vertex v from g;
14 else
15 save F ← v;

16 if u is isolated then
17 remove vertex u from g;

Multi type 

It is possible to create a global graph that would incorporate vertices and edges of all available 
asset types T . However, it is necessary to track to which underlying networks a given node 
belongs. In the NetworkX world it corresponds to a node v with an attribute “type”. This 
attribute needs to hold more complex data than simply the name of the networks.

Our approach was inspired by the Unix file permissions [12]. In Unix operating system, each file 
has the following access modes: no access, read, write and execute. These modes are usually 
abbreviated to -, r, w and x. Alternatively, each mode is also encoded and represented by an 
octal number: no access as 0o0, read as 0o4, write as 0o2 and execute as 0o13. Table 4 
summarises this notation. A feature of such an encoding is that any of eight possible mode 
combinations can be represented by a unique octal number. This unique combination is obtained 
by an addition or subtraction of mode numbers. In the octal world these “addition” and 
“subtraction” operations are represented by bitwise or and xor operators. In Python syntax these 
bitwise or and xor operators are “|” and “ˆ”.

3Octal numbers are written in Python notation.
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Code Mode Octal
- no access 0
r read 4
w write 2
x execute 1

Table 4: Unix file permissions

Encoding Credo asset types with octal numbers enables multi-type support in NetworkX. Analo-
gously to Unix file permissions, the octal codes are 1 for power, 2 for telecommunications and
3 for sewage assets. The multi-type version of fault propagator generates a single graph. This
global graph consists of vertices and edges representing assets (and their connections) from all
Json files available. Both vertices and edges in this graph have an additional parameter called
“Code”. This parameter stores the octal number encoding the type or multiple types of assets.

Figure 2: Multi-type assets

Figure 2 clarifies, how octal codes are used to encode multi-type assets. Consider Figure 2a. It
shows a miniature graph that consists of three vertices A, B and C. Vertex A is of type power and
has the code 1, vertex B is of type telecommunications and has the code 2, while vertex C is of
type sewage and has the code 4. There are two “power” connections coming from vertex A to B
and from vertex A to C. Therefore, both edges (A,B) and (A,C) are of type “power” and have
the code 1.

Refer to Figure 2b. In this case vertex A became a source of telecommunications connection in
addition to its existing power source. Therefore, its code changed to 0o3 = 0o1 | 0o2. Similarly,
the edges obtained the same modification and have the code 0o3 now. Vertex B became a sink
of a landline connection in addition to its existing sewage state. That’s why its code is 0o6 = 0o4

| 0o2. Finally (reading new information from Json files) it was discovered that vertex C is also
a secondary source of power in addition to its sewage state. Therefore, its code has to update
to 0o5 = 0o4 | 0o1.

Last example in the series depicted in Figure 2c illustrates an opposing scenario, the case when
assets become flooded and go offline. Vertex A loses its power source and its code is updated
to 0o2 = 0o3 ˆ 0o1. Similarly, the edge (A,B) and (A,C) codes are also downgraded to 0o2.
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Vertex B is left intact. Finally, vertex C also loses its power and its code changes to 0o4 = 0o5 ˆ 
0o1.

Fault propagation over a global graph with multi type assets requires additional changes to the 
algorithms explained above. However, the core logic of the algorithms shown in pseudocode 
remains the same.

It is important to note that this multi type asset support may be extended further. In case more 
asset types are added to the system, more bits should be added to the code. The current three-
type system can be encoded by an octal, three-bit number 23, a four-type system will be 
expressed by a four-bit number 24 etc.

3.53 Code implementation

Fault propagation is implemented as a two-phase process. Each phase is encoded in a separate 
Python script. The first phase generates dedicated NetworkX graphs for each type of assets, i.e. 
there will be three graphs:

• power,
• telecommunications,
• sewage.

For those interested in working directly with the code implementation, this Python script is called
graph-generator.py. It consists of two functions add_vertices() and add_edges() called in the
main body of the script.

The second phase implements the fault propagation. It is encoded in the Python script called
fault-propagator.py.
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4 Decision support

For decision support models, we focussed on a slightly more general network model than the
model outlined in Section 2. We do not only consider connectivity, but also use a linear flow
model with arc capacities.

Given a directed graph G = (N,A) with capacities c ∈ RA, such that only a certain amount of
flow is allowed to travel in the arc A the capacities should be derived from the physical capacities
of the lines, where applicable. In the case of a fresh water network, this would be a restriction on
the volumetric flow rate. We also define a variable f for the flow over each arc, i.e. f ∈ RA ≥ 0.
For every flooded arc a ∈ FA, we introduce a variable xa ∈ {0, 1} to model whether the arc should
be prioritized for repair.

To model supply and demand, we need to consider three types of nodes:

• For all supply nodes n ∈ S, we want the outflow out of the node to be between 0 and an
upper bound s on the supply capacity;

• For all demand nodes n ∈ D, we want the inflow into the node not to exceed an upper
bound on the demand capacity d, but otherwise be as large as possible;

• For all other nodes, inflow should equal outflow.

To model these requirements, we introduce a variable bn ∈ R for every node n ∈ N , which we
call the excess of that node. This leads us to the following constraints on the flow:

Flow balance : Inflow equals outflow plus excess.
Arc capacity : The flow in the arc cannot exceed the arc capacity.
Arc repair : Flooded arcs can only be used if they have been repaired.
Supply/demand bounds : For supply nodes, the excess is between −s and 0, for demand

nodes between 0 and d, and for all other nodes it equals 0.

As discussed, we assume that we can measure the utility of satisfied demand. We formalize this
assumption by assuming that for every demand node n, we are given a function un(b), that maps
a given excess b to a utility. Depending on the available data, we would propose to choose un to
be linear or at most piecewise linear concave.
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A basic mixed-integer optimization model would then look as follows:

max
∑
n∈D

un(bn)

such that
∑

a∈δin(n)

fa = bn +
∑

a∈δout(n)

fa

0 ≤ fa ≤ ca for all a ∈ A

0 ≤ fa ≤ xaca for all a ∈ FA

0 ≤ bn ≤ dn for all n ∈ D

− sn ≤ bn ≤ 0 for all n ∈ S

bn = 0 for all n ∈ N \ (S ∪D)

f ≥ 0, x ∈ {0, 1}FA .

For the above choices of un, this leads to a mixed-integer linear optimization problem, which
can be modelled and solved using standard solvers, at least for small to medium sized networks.
Given more data and time, we would have implemented this model using the modelling framework
Pyomo [13] and used the solver CBC to solve the resulting optimization problem.
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5 Recommendations

In this demonstrator project we were able to analyse the network connectivity for three major
networks—power, water and telecommunications—after a flood occurs in a city. The connectivity
analysis was done using a single network approach and combined with a global fault propaga-
tion. We hope this technical study shows how network models can be developed for a better
understanding of the impact of climate change on our infrastructure.

Several lessons were learned while developing this study which can supplement future iterations
of the digital twin project:

1. It is necessary to integrate the data requirements of more detailed models early in the design
process as it will be difficult and costly to request additional data later. We were only able
to achieve a fraction of the original goals with the limited amount of data in the original data
request. Additional data would facilitate further work in this area.

2. The achievable detail level of the models is tied to the desired spatial and temporal resolu-
tion. This needs to be taken into account when planning data acquisition and planning for
modelling work. In our case, the final area that was covered by the demonstrator was too
small to show interesting network interactions.

3. Having easy access to the asset owner data in a tabular format would have reduced the
work in this package. The existence of an abstraction layer between asset owner data and
our model proved to be an obstacle in our project. In our case, a network for a single asset
has the advantage that there exist only a very small number of node and arcs types. Having
access to one table per type will reduce implementation time. In the current version, first
the asset owner data is processed into a unified representation, in our case, the knowledge
graph. We then have to extract the asset-specific data (for instance, the node type) from
this unified representation. This means that we have to undo a lot of the work done in the
step before, which complicates the workflow.

4. Our modelling assumptions for fault propagation need to be refined. We are taking a very
simplistic approach to failure: an asset fails if one asset it depends on fails. This does not
consider that certain assets can replace each other or that certain failures are acceptable
for a short amount of time. Propagation of faults needs to consider different timescales
and multiple types of faults. This might be achieved by using multiple networks coupling
the assets, for instance for different timescales and fault types. Whether this is a feasible
approach needs to be studied in future projects.

5. The current multi-type fault propagation algorithm assumes that all networks can be inte-
grated into one big network. This assumption does not allow for more detailed models of the
separate asset-owner networks and makes it necessary to share more information between
networks than strictly necessary. Hence, more thought needs to be put into making sure
that fault-propagation uses only the minimum amount of information necessary.

6. The network connectivity analysis could be further expanded to include other asset types
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such as transportation links, i.e. road or train networks. These links will decisively impact
on the recovery speed of the sites, as human resources will be required to repair a site and
bring it online. Whether existing data sets are suitable for this task or it is better to identify
bottlenecks through expert elicitation needs to investigated further.

7. The input JSON files could be further expanded to include a network identifier, i.e. water,
power, telecommunications, to automate the file reading and preprocessing functions. Cur-
rently, the input file names are stored in environment variables to aid in this process. An
internal field within the JSON files could eliminate the need of the environment variables.

In future studies we aim to expand on the lessons learned detailed above and develop more
sophisticated models to show how a real infrastructure network would react to climate change.

Future iterations would benefit from using the model outlined in Section 4. While it is essential
to know how failures in different systems interact, it will be even more critical to know where the
focus for fixing these failures need to be put. This also needs to incorporate careful modelling
of the impact of failure of assets to make sure that societal inequalities are not amplified during
disasters.
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Nomenclature

CBC COIN-OR Branch-and-Cut, an open-source mixed integer programming solver

CSV Comma Separated Values

DAFNI Data & Analytics Facility for National Infrastructure

IRI Internationalised Resource Identifier

JSON JavaScript Object Notation. An open standard file format

OR Operational Research
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