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The Climate Resilience Demonstrator, CReDo, is a climate change adaptation
digital twin demonstrator project developed by the National Digital Twin programme
to improve resilience across infrastructure networks.

CReDo is a pioneering project to develop, for the first time in the UK, a digital twin across infras-
tructure networks to provide a practical example of how connected-data and greater access to
the right information can improve climate adaptation and resilience. CReDo is the pilot project
for the National Digital Twin programme demonstrating how it is possible to connect up datasets
across organisations and deliver both private and public good.

Enabled by funding from UKRI, The University of Cambridge and Connected Places Catapult,
CReDo looks specifically at the impact of extreme weather, in particular flooding, on energy, water
and telecoms networks. CReDo brings together asset datasets, flood datasets, asset failure
models and a system impact model to provide insights into infrastructure interdependencies and
how they would be impacted under future climate change flooding scenarios. The vision for the
CReDo digital twin is to enable asset owners, regulators and policymakers to collaborate using
the CReDo digital twin to make decisions which maximise resilience across the infrastructure
system rather than from a single sector point of view.

CReDo’s purpose is two-fold:

1. To demonstrate the benefits of using connected digital twins to increase resilience and en-
able climate change adaptation and mitigation.

2. To demonstrate how principled information management enables digital twins and datasets
to be connected in a scalable way as part of the development of the information manage-
ment framework (IMF).1

This first phase of CReDo running over the period April 2021 to March 2022 has focused on
delivering a minimum viable product to bring the datasets together to offer insight into infrastruc-
ture interdependencies and system impact. Separate technical papers have been produced to
describe each stage of the project so far:

CReDo Technical Paper 1: Building a cross sector digital twin

CReDo Technical Paper 2: Generating flood data

CReDo Technical Paper 3: Assessing asset failure

CReDo Technical Paper 4: Modelling system impact

CReDo Technical Paper 5: CReDo and the Information Management Framework

The technical papers are nested under the CReDo Overview report, and all CReDo reports and
related materials can be found on the Digital Twin Hub, https://digitaltwinhub.co.uk/projects/credo.

1IMF - DT Hub Community (digitaltwinhub.co.uk)
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Summary

Climate change is increasing the frequency with which UK infrastructure is threat-
ened by extreme weather events. As part of the CReDo project a digital twin
based decision support tool is being designed to help different asset owners eval-
uate the impact of such extreme events to strategically address these mounting
threats.

The novel feature of this tool will be not only to provide assessments concerning the impact on
the infrastructure and networks of individual asset owners, but also to communicate information
concerning the functionality of assets owned by other companies - where the failure of these
assets impinges on the functionality of their own. This technical report outlines one part of this
project: how the functionality of individual assets within a network is affected by exposure to water
during a flood event. We demonstrate how a Bayesian model of this relationship can be built from
the weather data available, the science and the expert judgements of the relevant asset owners.
We embody these judgements as a Bayesian network model, which links the operability of each
individual asset to a specific kind of flooding incident. We show how these probabilistic models
can serve as an interface between the outputs of complex flooding models and the inputs of
an operational research model that calculates the knock-on effects of asset failures through the
composite network. The methodology and development of this model are illustrated through the
application of the model to future flood risk incidents that might happen in a region in East Anglia.
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1 Introduction

Climate change is increasing the frequency with which the UK infrastructure is threatened by ex-
treme weather events. To explore the potential impact of future climate conditions, the CReDo
project is working to develop a digital twin of key infrastructure networks. This digital twin can be
used to help make decisions to better protect the networks in advance of extreme weather events,
and ultimately to help inform a real-time response to extreme weather events. The novel feature
of this tool is that it will provide the collaborating asset owners - and also crisis management
teams - with not only assessments concerning the impact of a weather-induced flooding incident
in a future climate on the infrastructure and networks monitored by the individual asset owners,
but also the operability of assets owned by other companies - where the failure of these assets
impinges on the functionality of their own. The highly interdependent nature of these infrastruc-
ture networks, such as telephone lines relying on power supplies being operational, mean that
reliably modelling the impact of an extreme weather event requires accounting for such connec-
tions. It is planned that the shared appreciation of the mutual threats described by the digital twin
across the different actors will encourage further coordination between the companies in their
strategic plans to mitigate these increasing threats.

This report outlines just one component of this development. We demonstrate how it is possible
to elicit from asset owners the probabilities that each of their assets might fail, in a particular future
flood scenario that makes consideration of the impact of climate changes on extreme weather
patterns. Taking these unfolding events, and through working with teams of domain experts drawn
from asset owners associated with the local power, water and telecommunication companies,
our team demonstrate how it is possible to elicit probability distributions of the failure of each
asset and their connections within the network. This information would then be fed to operational
researchers who can calculate the knock-on effect on the whole network of each simulated future
incident. From a decision-analytic perspective, the digital twin would thus consist of connected
digital twins representing hydrology, the failure modes of assets, and the system in which the
assets sit, with a decision support layer sitting above this.

One framework for integrating the digital twin’s components is the integrating decision support
system (IDSS) developed by Smith and others [1–3] where several complex dynamic probability
models are knitted together into a single coherent composite. This technology has now been
successfully applied in a wide range of settings - see for example [4–7]. In this case, the different
groups of experts within CReDo, known as component panels, consist of climate change mod-
ellers; weather researchers, especially those specialising in flood modelling; representatives of
the three asset owners whose assets would be threatened by the potential flood; and a team of
operational researchers who can predict the impact of the unfolding crisis on the whole network
of assets given various failure configurations.

The digital twin decision support system would inform asset owners in an intuitive manner of the
risk to their own network from both a cascade of failures that a flood would induce within their
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own assets, and also from failures within other related asset networks. In the first instance, the
system would be designed to help inform the strategic development of asset protection, renewal
and replacement by each asset owner that would be robust to the mounting threats posed by
climate change. In the medium term the technological development within CReDo is planned to
form a component of real time decision support tools that inform crisis teams about the impact of
a threatened extreme event, update predictions about the impacts of the unfolding crisis through
the timeline of the event, and evaluate the efficacy of various mitigation strategies. This function
would be analogous to Bayesian support tools previously designed to evaluate the impact of
countermeasure strategies in the presence of crises such as a nuclear accident, food security
risks and terrorist threats [4–7] (the term Bayesian in this context means that probabilities are
used to represent all uncertainties that are quantified.)

This work centres on constructing a probability model which gives a joint distribution of whether
each asset in a network will continue to function at a given time T under current protocols and
positioning of assets; the range of extreme flooding incidents considered, for present and future
climates, is described in more detail in the hydrology report. Its outputs are then delivered to an
operational research module that calculates the consequent impact on the network at that time
T , accounting for the likelihood of each individual asset failing.

This flood-to-failure probability model will take inputs from two different sources:

1. Flood models within the digital twin provide indication of the extent of flooding in current
and future climate conditions of a selected flooding scenario up to and including time T .

2. Supplementary expert judgements concerning the finer details of events associated with
the extreme flood incidents provide information vital to the evaluation of the actual impact of
the flooding. These expert judgements are especially important when mathematical models
of climate or flooding do not predict aspects of the development which will be critical to
determining whether an asset will be able to operate or not.

For the purposes of this work we only look at the effect of the incident on infrastructure in a
particular region, as successfully eliciting accurate probabilities from domain experts requires
tightly defined events.

Early in the CReDo project it was realised that within the time frames of the project – accounting
for the flooding data available to the team – it would only be possible to demonstrate the digital
twin of the networked assets on a single time slice representing the point of maximum disruption in
the network. This simple depiction would nevertheless be sufficient to demonstrate the efficacy of
the network model, and its power to communicate the potential knock-on effects that a particular
flooding incident might have on the combined asset network. On its own, such a tool would
already provide the framework for discussing the network-wide implications of policies within
various strategic analyses. In future work, we would use this simple demonstrator as a basis to
develop a full dynamic model of the failure processes and propagate their effects through the
full network, exploring through time how both the flooding incident evolves and the impact of
mitigating actions instigated in response.

This document reports our contribution to CReDo. In the next section we provide a formal speci-
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fication of the general probabilistic component model that takes as input flooding information and
predicts the failure probability of each asset within a given network. It was extremely important
that this component probability model – used in the digital twin – was as realistic as it could possi-
bly be. It was therefore necessary to first perform a series of elicitation sessions with the different
asset owners to understand the way their assets might fail.

In an exploratory phase, through various video-call interviews with representatives of asset own-
ers, we began to explore the vulnerabilities of the different assets to different kinds of flooding
incident and discover some of the key features of these vulnerabilities. Some of the discoveries
we made at this stage, and in subsequent elicitation meetings are outlined in Section 3. On the
basis of these we were able to build probability models that embedded the generic structural
forms of these explanations of failure. We discovered that a Bayesian Network (BN) provided a
transparent and feasible framework around which to express this general class. A BN is a prob-
abilistic graphical model that represents a set of variables, in this case the key vulnerabilities of
the assets to flooding incidents, and their conditional dependencies via a directed acyclic graph.
An example is given in Figure 3. In this report we describe the first prototype model built for
asset failures – this was implemented using generic off-the-shelf BN software tools. We provide
explanations of the key terms “vulnerability” and “Bayesian Network” below.

Key Terms

Vulnerability: Vulnerability in this report represents the susceptibility of an asset, considered in
terms of its probability of failure, to a climate hazard. Within an assessment of the vulnerability
we consider factors such as the asset’s existing condition, capacity and ability to cope in the
presence of the hazard.

We consider the vulnerability in terms of the asset’s susceptibility, and not the criticality of the
asset in the system, nor the impact of cascading failures within the system, which are considered
elsewhere within CReDo.

Bayesian Network (BN): A Bayesian Network is a tool that allows us to represent the variables in
a problem, and relationships between them, in a graph. A directed arrow between two variables
indicates that a the value of the child (“into”) variable depends on the value of the parent (“out of”)
variable. The absence of an arrow between two variables indicates that the two variables can be
thought of as independent, given the values of their parents. By placing arrows carefully in the
graph, we can display all of the important relationships between the variables.

The BN structure gives us a model for our uncertainty in all of the variables together. When we
observe the values of any of the variables, the BN structure enables us to update our uncertainty
about all of the variables (using Bayes’ Theorem).

Eventually, we will need to build up models of assets as a function of their detailed type and
location. Although within the time frame of this project we were not be able to perform this for all
assets, we were nevertheless able to demonstrate how this would be performed for one asset
facing one type of incident, albeit for a non-stochastic model (that is, for the single time slice
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considered within the demonstration of the CReDo digital twin). In Section 4 we describe both
how the elicited generic BN structure from Section 3 could be first simplified then embellished
into a full probability model using established Bayesian elicitation techniques.

The report ends with a short description of how the techniques explored could be developed
further and applied to CReDo, to provide both strategic and real-time decision support in the face
of future extreme flooding events, for mitigation of their threats to a network of assets.

The development described in this document is just one part of the CReDo project, designed to
investigate the feasibility of implementing a digital twin addressed to inform the progression of
such weather-induced flood incidents. We demonstrate how this component could be extended
to provide a digital twin – applicable to the different asset owners in helping inform their strategic
plans, and eventually to support their real-time counter measures. We would like to thank all
the representatives of the different asset owners for their wholehearted engagement in the many
elicitation sessions that informed this study. Their contributions have been intrinsic to the positive
conclusions about the promise of such methods within a composite model.
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2 A probabilistic framework for assessing
network operability after a flood

This section provides a formal description of the Integrating Decision Support System (IDSS)
used for the digital twin modelling, which will be required by anyone looking to replicate the ap-
proach. As such, the IDSS is presented in a general form applicable to assessing the likelihood
of asset failure during an extreme flooding event. Readers whose primary interest lies in the spe-
cific application, in which this general IDSS has been adapted for the specific flooding scenarios
demonstrated within CReDo and detailed above, can omit this section, as the other sections can
be read largely independently of it.

2.1 The formal structure of the driving process
Any underlying IDSS would be a composition of various different stochastic models delivered by
various different agencies. First of all, complex climate change models would deliver collections
of extreme incidents i ∈ I that might occur because of climate change, as a function of different
parameters within the models, and whose outputs would be applied to the geographical area
containing the network. On the basis of each generated incident, weather modelers would then
apply their modelling tools to predict how the weather consequences associated with how flooding
in a future climate incidents might unfold.

Within this IDSS, our team would take these stochastic weather inputs and model their impact on
the failure of each of a given set of assets J . These assets would be represented as the nodes
of a network and be partitioned across three different asset owners - assets owned by a power
company J1, a water company J2 and a telecommunications company J3 - so that J = J1∪J2∪J3.
The network would be completed by a set of directed edges. A directed edge would be included
from one asset to another - within or across different asset owners - if the failure of the receiving
asset might be dependent on whether or not the donating asset at the base of the edge failed.
For example, there might be an edge representing pipe-work from one asset to another in a water
company or a power connection from a power asset into a telecommunications asset.

Expressed in technical terms, our remit was therefore to develop realistic stochastic transfer func-
tions of a given time series of flooding-induced weather incident i ∈ I to a failure type, first for
each asset, then for each connection within the network. For each given flood-induced weather
incident i ∈ I the failure modelling team would receive:

1. A spatial time series {dt(l : i)}t∈T over a grid of locations l ∈ L within the geography of
assets and discrete times t ∈ T of the depth of flood - specified until a termination time of
the incident t+. These depths would themselves be stochastic functions provided by flood
specialists who would use flood modelling as a tool to generate a spatial grid of flood depths.
The granularity defining T might depend on the type of flooding incident - for example, flash
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floods needing finer granularity than river floods because of the relative speeds at which
these different types of incident might unfold.

2. For each extreme incident a spatial time series {rt(l : i)}t∈T l ∈ L, i ∈ I of other weather
events that would be predicted to occur simultaneously with the flooding event, for example
storms or persistent or violent rain, which would threaten the exposed parts of the network
and impact on the failure of some of the assets. This could also contain information about
potential ground saturation which would impact the effect of the flood.

Within this iteration of CReDo, only observations of type 1. above were available. Note here that
both the number of time points #(T) and the size of the lattice #(L) are henceforth assumed
finite. Below we use the standard time series shorthand for any vector time series {Xt}t≥0 to let
Xt′ ≜ {Xt}0≤t≤t′ .

For each incident i ∈ I our Bayesian model would take as inputs, features of the probability
mass function to time t, 0 ≤ t ≤ t+ of the flood depth profile dt(l : i), and the surrounding
weather conditions up to that time rt(l : i)

qt(dt(l : i), r
t(l : i)) = q1t(dt(l : i)|rt(l : i))q2t(rt(l : i))

for each incident i ∈ I and delivered by JCEEI. Note that the usual rules of conditioning would
provide all our team might need: a joint distribution of the multivariate spatial times series of
{Dt(l : i),Rt(l : i)}t∈T,l∈L as this applied until the end of each incident i ∈ I.

Our original remit within the context of this project was to build a BN which would take such an
input time series and develop a methodology that predicted its effect on the operability of each
of the assets in the network in response to the weather-induced flooding in this incident. We
learned from the series of elicitation exercises we performed that one of the key features which
would determine the operability of the assets as this developed over time was whether or not
engineers could obtain access before or during the incident, in order to protect it when working
or to repair it if it had failed.

So let At(j : i) be an indicator variable denoting whether or not a company’s engineers have
access to asset j ∈ J . Let Ct(l : i) denote the indicator variable of whether or not permission
is granted by any incident control centre for the engineers of the relevant asset owners to have
access to the given site located at l. Note that this will be a function of the predicted severity of
an incident .

By definition, for a given incident i ∈ I, At(j : i) will be a function of{
Dt(l : i),Rt(l : i),Ct(l : i)

}
l∈N(j:i)

for asset j ∈ J , where N(j : i) denotes those locations that
impinge on access to asset j given the incident i. Notice that N(j : i) will contain the location of
the given asset j but also those locations whose flooding might influence the access to this site
by engineers - for example the locations of highways into j that might be flooded by incident i or
held open for access only for emergency services by a control centre c at a given time t. The
density of the time series {At(j : i)}t≥0 will be denoted by

pa(j),t(at(j : i)|
{
dt(l : i), rt(l : i), ct(l : i)

}
l∈N(j)

)
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Secondly, an asset might fail for indirect causes, if for example a main power source intrinsic to
its successfully working fails and there is no back-up to that source – for example the back-up
battery fails. Let Bt(j : i) denote the vector of indicators that a back-up is available for the main
source delivered by an edge into the node j in the network failing at time t. These failures will
typically depend on the same vector of events in the neighbourhood of the asset and so will have
conditional mass function given by

pb(j),t(bt(j : i)|at(j : i),
{
dt(l : i), rt(l : i), ct(l : i)

}
l∈N(j:i)

)

Finally an asset j ∈ J will not be able to operate at time t - denoted by the indicator variable
Ft(j : i) - if either because of the flood the asset itself fails directly - represented by the indicator
variable F

(1)
t (j : i) or alternatively because the asset fails because an intrinsically important

networked source into it has failed at that time and any back-up source also fails at that time
F

(2)
t (j : i). Note that this means that

Ft(j : i) = 1−
(
1− F

(1)
t (j : i)

)(
1− F

(2)
t (j : i)

)
. (1)

We then have the probability of an individual asset j ∈ J being taken offline because of the direct
effect of the flooding incident, given it can receive all the network connections it needs:

pj,t(ft(j : i)|at(j : i)
{
dt(l(j) : i), rt(l : i), ct(l : i)

}
l∈N(j)

, bt(j : i), et(j))

where et(j), j ∈ J is the event that a source input to an asset j ∈ J necessary for it to operate -
linked by a directed edge into j ∈ J in the network graph - has failed.

Given these probability assessments at each time step, by marginalising across other variables,
we can then derive the conditional probability mass function

p∗j,t(ft(j : i)|
{
dt(l : i), rt(l : i), ct(l : i)

}
l∈L , et(j))

of failures of assets on the system as a function of the flood depths, other relevant weather
events, and emergency protocols in place at the time of the incident. For each i ∈ I writing
F t(i) ≜ {Ft(j : i) : j ∈ J} this in turn means that we could deliver the one step ahead joint mass
function of asset failures over the network

p∗t (f t(i)|
{
dt(l : i), rt(l : i), ct(l : i)

}
l∈L f

t−1(i))

given inputs of the simulated flood consequences and the crisis management protocols in place
at the time concerning access permissions.

To calculate the density of the time series of failures across assets we can then simply marginalise
across the delivered probability distribution of flood event protocols – the last being deterministic,
but variable components of the analysis – to obtain the one step ahead probability mass function{
p∗t (f t(i)|f

t−1(i))
}
t∈T for each chosen incident i ∈ I. This then provides a step-by-step unfolding

of the incident i ∈ I. This is sampled and fed into the operational research module, which would
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calculate the impacts of the failures to the whole of the network, and study various rerouting
options to mitigate the impacts of the flood. Explicitly, we can calculate and therefore sample
from the full network incident of f(i) ≜ (f0(i),f i(i), . . . ,f t+(i)) whose joint mass function will be

p∗t (f(i)) =

t+∏
t=1

p∗t (f t(i)|f
t−1(i)) (2)

In principle the process we needed to go through therefore appeared to be a lengthy but sys-
tematic one. By populating the various probability distributions with data and expert judgements
associated with an ongoing incident i, and by combining these with meteorological data we could
– at least in principle – provide a probabilistic digital twin calibrated to reality which could – given
sufficient time – be used for strategic planning, and even crisis management decision support.
However for the purposes of CReDo there were several issues that demanded that we simplify
this process if we were to be able to demonstrate such a system in a short period of time.

The primary purpose of this analysis was to support strategic discussions about the most vulner-
able parts of a network. A collection of flooding incident scenarios is generated from the outputs
of flood models, run for current, and a sample of possible future, climate conditions. The condi-
tional probability model we describe here would then be used as a stochastic transfer function.
It would take various measures of the advancing threat in time and space, generated from the
flooding scenarios investigated in current and future climate conditions above, and project these
on to probabilities of various types of failure of each of these individual assets.

From this output we are able to sample the various combinations of failures across different assets
owned by the three different companies for each of the flooding scenarios considered. Each
instance within the sample then provides a summary description of how asset failures induced
by the incident might affect the mutually vulnerable power, sewerage, water and communications
assets as a composite, as each scenario-induced incident advances in time and space. From
this, a final model depicts this network of failures, and calculates its impact on the functions of all
these networks.

In this initial phase of the study it was agreed that in the first instance the digital twin would inform
the strategic planning of the three companies, in a way that respects their co-dependency within
any ongoing incident. The runs used in the scenarios considered by the digital twin would depict
the impact of critical flooding incidents used in planning analysis, including consideration of a
changing climate. Here we assumed that the current siting of assets, their defences and the
protocols for remedial actions of engineers would remain unchanged. These runs would provide
a benchmark from which to appraise the vulnerability and criticality of various assets owned by
each asset owner to the composite impact across all three networks arising from these incidents.

However, the mathematical models could naturally be extended to study the potential benefit to
resilience of various different works programmes, and also to provide a template for a real-time
digital twin to support crisis managers in coordinating their responses to a flooding incident as
it actually unfolds. In the medium term we plan to extend the digital twin so that it could provide
such support; further detail on this is provided in the discussion at the end of this report.
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2.2 Practical challenges and simplifications

2.2.1 Flooding inputs and models

We learned that the different types of flooding incident could be studied using weather models.
However different incidents would use different models. Furthermore, despite being based on
extremely sophisticated atmospheric models, standard runs of these simulation models were
typically deterministic. Although it would be fairly straightforward to build statistical emulators,
which on the basis of different runs of the simulation models could provide stochastic inputs that
probabilistically described the development of any unfolding incident, this would be costly in both
time and resources and beyond the scope of the project. The data we had available to us were
single snapshot summaries of the flood which gave the maximum depth of any simulated flooding
incident across a fine grid of locations.

This meant that to demonstrate the methodology we would need to build a probabilistic model
only on a single time frame – expressing the failure of each asset as a function of these delivered
extremes. In one sense this simplified our task since the inputs of the model were fewer. However,
calibrating to a realistic development of a flooding incident was made more difficult because
experts would express the effects of the flood in terms of a developing crisis rather than as a
single event.

Although this snapshot would provide a very coarse tool for looking at the consequences it would
still illustrate the main advantage of the digital twin – i.e. for different asset owners to obtain a
transparent picture of how different the failures of the composite of assets induced by a particular
type of incident, and owned by different companies, would cascade across the network. Through
this a better and more comprehensive perspective of the effect of different types of incidents
and the pressure points on the whole network could be explored, within a more comprehensive
strategic analysis by each of the asset owners.

2.2.2 Elicitation

Even for a single time slice the task of eliciting failure probabilities across the whole network was
a massive one, and not one that could be completed in the space of a few months. We therefore
chose first to elicit a general framework that would define failure mechanisms of assets in general,
whilst trialling its effect in simulating network failures first by populating it with dummy probabilities.
We would then use information from the elicitation sessions to determine the types of information
we would need to elicit from domain experts. We would proceed to trial this methodology against
just one particular predicted incident, and one of the major assets that would be threatened by
the flood. The progress of these elicitations is given in the later sections of this report.

2.2.3 Developing a snapshot class of graphical model

A dynamic model of the multivariate time series we described in the last subsection can be fully
expressed as a Dynamic Bayesian Network. However, given the constraints of the project, an
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incident that is summarised in one time slice only can be framed around a much simpler class
of graphical models called a Bayesian Network (BN). Major advantages (see e.g.[8], [9],[10]) are
that BNs have been tried and tested over many years and many analogous applications and thus
their efficacy is well understood, and that well-maintained commercial software of various kinds is
available. This graphical model enables us to embed the judgements elicited from experts within
the asset owner teams. The topology of the BN – embellished by event trees – first describes
the broad processes that give rise to various types of failure of various types of asset. Because
the BN is fully compatible with a probability model, the framework it provides can then be used
as a structure that can quantify probabilistically the likely failure of different equipment as a flood
incident progresses. This is achieved by populating these by processes using elicited conditional
probability tables in a way we describe.

We note that the BN module we build as part of this support tool enables us to provide a formal
and auditable interface with the complex outputs of (weather and) flood models describing the
unfolding incident. This is because it explicitly embeds the assertions and assumptions made
by informed experts about how the failures in different parts of the system are causally linked
together through the mutual exposure of assets and their connections to water. As such it is able
to take into account the likely mitigating acts of the asset owners as the incident progresses.
An advantage of the BN is transparency: if the relationships represented through the BN are
contentious then this inadequacy will become apparent. The topology of the BN can then be
adjusted to better represent the knock-on effects of the unfolding processes as these cascade
through the network.

In the next section we describe some of the key issues that were elicited from asset owners
concerning how assets could fail under various conditions and how they would react to protect
assets or restore them to working order when they could obtain access to do this, and then
describe how we can produce a generic BN of these. In Section 4, we describe how such methods
can be used to generate the types of transfer function we need for our digital twin, and proceed
to illustrate our methods. We end the report with a short discussion of how we are embedding
these probabilistic models into the composite decision tool being developed within this project.
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3 A description of the vulnerability of indi-
vidual assets to flooding

3.1 The elicitation process
To specify sufficiently precisely an extreme flooding incident for this context, we first needed to
understand how such incidents could influence the operability of the individual assets owned by
the three different companies contributing to CReDo. We were especially interested in those
types of failures that might cascade into other consequent failures – both of that asset owner’s
own assets and also those of the other two companies. To do this we conducted a number of
elicitation exercises. These enabled us to model combinations of features of an incident that, in
a generic way, might contribute to a number of assets failing. In this subsection we summarise
below some of these risk features. More details are given in the appendices of this report.

The primary goal of each elicitation session was to provide an interface – that could be extended
into a probabilistic interface – mapping the flood scenarios provided to their effect on each of
the individual assets. To do this, expert judgments needed to be elicited about the probability
of failure of an asset conditional on certain broad categories of impactful covariates that might
affect this probability.

Our first task was to understand properly how unfolding events associated with precipitation,
especially flooding and coincident weather events, threatened different individual assets located
within the region; so how such flooding events might cascade to the infrastructure systems. To be
realistic, we learned that it was critical to include in this description how these cascading events
might routinely induce remedial actions by each of the asset owners, and in what circumstances
they would be allowed to perform such remedial acts. Also of critical importance, was to under-
stand similarities and difference in how the different companies perceived these threats – the
important drivers and consequences of the unfolding process, which we would then digest into a
single snap-shot of the most critical stage of the incident induced crisis expressed by a single BN.
Using a network model, these individual component probability models would then be applied to
the composite network of critical assets within the demonstration area, providing a composite
probability model of the likely consequences of the weather events considered.

It quickly became apparent both through early discussions and the more formal elicitation ses-
sions that the conditioning events relevant to the failure of each critical asset, and the failure
scenario across the whole network, would not only depend on the status of assets represented
in the network, but also on other events not explicitly represented in the digital twin. An important
example of such external events would be blockages along the highways giving access to an as-
set, which could hamper the access of engineers to a compromised or potentially compromised
site. The modelling decision here was whether or not to include these critical external, com-
promising, secondary events induced by a flood as part of the conditioning descriptions which
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might embellish the various instances induced by one of the flooding scenarios or to treat such
events as uncertain events averaged out across the overarching model. Given the lack of explicit
information on highways the second approach was adopted.

Here, we document how we produced a probability model giving the framework for describing
a joint distribution of whether or not each asset considered is contributing to the network at a
single given time T . We initially focused elicitations on a time T chosen as the time when the
network would be maximally disrupted – more specifically when the system was exposed to the
highest levels modelled across the grid over the duration of the flood event. This would be most
compatible with information about an incident provided by the flood modelling, and would provide
a single snapshot of the incident we would use in our prototype model as discussed above. We
would then sample this distribution conditional on the flood depths we received up to and including
time T , repeating these snapshots for each of the flooding scenarios at collections of different
times over the simulated flooding incidents.

Thus, initially we needed to elicit from the relevant asset owners what cascading events leading
to the failure of each of their assets might be. We would then use the available flood depth
predictions, supplemented by further elicited expert judgements about weather that associates
with incidents like the ones in the scenario, to predict the joint failure events across the chosen
network. Therefore our elicitation would need to focus on not only the primary, but also the
secondary consequences of the critical conditioning states of the assets, which might determine
whether or not these assets would continue to function under the incidents being simulated.

3.2 An elicited structural model

3.2.1 Introduction to our methods

In the first instance we elicited a general framework which was sufficiently detailed to apply gener-
ically to any asset at risk of failure though a flooding incident. We followed a now standard
Bayesian structural elicitation protocol (see e.g. [9], [8], [2],
[11], [12], [13]):

1. We first elicited those broad features which we were told could have an impact – directly
or indirectly – on the failure of an asset. These provided generic covariates describing the
unfolding processes associated with a failure.

2. We then built a foldback graph [9] around which to structure a generic BN for a typical asset
that might appear in this study.

3. We next used these schemata to first define random variables that pass the Clarity Test.
These variables would form the building blocks of a probability model built around a BN. Note
that this transformed the conceptual processes expressed by the experts into processes
which could be defined – at least in principle – through stochastic relationships between
features we could measure explicitly.

4. We then drew a valid BN. This BN provided a formal framework around which to interrogate
the initial processes expressed through the foldback graph, and iteratively and interactively
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improve the model of the underlying generic failure processes.
5. Where appropriate we then expressed some of the broad temporal relationships graphically

using an event tree/chain event graph [14] to provide more details associated with the local
relationships populating the variables within this BN. We then specified the typical generic
levels of the random variables within this BN that would eventually be used as a template
for BNs of specific types of asset in the study.

6. Only then, asset by asset, did we customise this probabilistic graphical model to a descrip-
tion of the different processes that might lead to the failure of each of the specific individual
assets included in the study.

7. For each of these individual assets we then populated the conditional probability tables
associated with each variable conditioned on all combinations of levels of its parents in
the BN. Protocols governing these quantifying elicitations are now very well understood –
see e.g. [15]. Here we adopted the SHELF method of elicitation. We note that whenever
data is available these methods enable us to embed formally supporting data into these
assessments in a principled way. However, the Bayesian method also allows us to embed
scientific and engineering knowledge directly when no sample data is available.

Within the timescales of CReDo, we demonstrated steps 6. and 7. one a single asset, as reported
in Section 4.

3.2.2 A generic description of causal pathways to flood disruption

The initial traceback graph We depict below (Figure 1) the initial traceback graph [9] we
elicited from the first round of elicitations. This summarises the causal pathways traced back
from the descriptions of asset failure as described by experts within the different asset owner
teams. The idea of this graph is to draw out and feed back the main features and the casual
relationships between them, that might take us from an incident into the failure of any asset in
the affected area of study.

The directed edges into each node of this graph tell us what features might influence it, enabling
us to trace back along a casual pathway to the initiating incident. Although it is wise not to dwell
too long on the precise meaning of the nodes of this graph early in an elicitation process, this
meaning will be vital as the model becomes more mature. We therefore provide below sum-
mary documentation of how these features were extracted from both the elicitation sessions we
conducted and later discussions with experts that embellished these.

Different kinds of failure of assets on a given site It appeared from the initial elicitation
sessions that there are basically two types of asset failure which can occur, expressed with the
formula (1):

1. The asset is taken off-line because of a type of exposure to water that made it inoperable.
This would include the case when an asset continues to work but does this ineffectually (for
example sewage pumps working but not able to do the job intended, or not appropriately
because of communication failures). It would also include the case when the asset was
taken off-line as a precaution. Note that failures as we classify them here are not always
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Figure 1: The initial traceback graph.

failures of the equipment itself.
2. The asset was off-line because there was no mains power feed upstream (from either the

primary or if available secondary source) in a situation where there was no back-up power
source. This last depends on the local and global topology of the network, and depends on
network information provided by another module. We include in this category the possibility
the asset is taken off-line because of exposure to water of local power cabling so that no
mains power was available and no back-up – for example from a battery – was available
either.

Although obviously failures could be partial, for the purposes of this study for simplicity we will
always assume that assets either fail or work fully. This greatly simplified the elicitation process,
while still enabling us to bound consequences of an incident. Having determined the types of
failure to be considered in the study we could then proceed to work backwards from these se-
quentially to better understand how these failures could have come about.

Direct causes of failure Within the context of the incidents we were considering we discovered
that the essential causes of failures of the asset could be classified into three types. The main
direct cause of failure was the exposure of the asset to water. We later learned that any such
exposure could damage electrical components in a way that cannot quickly be restored. Of
course, the precise nature of the exposure – for example the location, extent and duration – that
might cause an asset to fail would depend critically on the type of asset under consideration, and
the routine protection provided.

Indirect threats such as run-off of chemicals into a water purity plant could cause it to close down
(see below). These effects are usually mediated through the increased risk of the exposure to
water.
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The other major effects are high winds and lightening strikes (usually only relevant to assets
owned by the power network and communications network) that could occur during the storms
driving a flooding event. These associated events could bring down overhead lines providing
power to an asset (which may be remote from it): the outcome of the second point above. We
therefore denoted these events as storms in the foldback graph. Note that in this latter case –
although information about the vulnerability of overhead infrastructure under different wind expo-
sures would be essential information to the power network – information would need to come from
different modelling approaches than those taken in this study. We further learned that available
climate datasets are typically calibrated for one weather variable (e.g. rain or wind), rather than
rain and wind together.

Types and extents of exposure to water/ wetness The extent of exposure to water of the
vulnerable parts of an asset – in the graph this is denoted by wetness – would depend on the
types of extreme conditions arising because of events induced by the rainfall within the incident.
But of course, this vulnerability would also depend on the routinely provided protection of the
asset (for example the elevation from the ground). We learned that internal components coming
in contact with water would tend to be damaged, and resulting electrical fire can quickly cause
the asset to fail in ways that are not quick to repair.

We also learned that protection given before and during the incident to these vulnerable parts of
the asset could fail through becoming wet. One example here would be the ability to resource
power through a battery in order to replace a compromised main power source (our second type
of failure listed above). Protection could also consist of activities such as engineers setting up
water pumps, moving assets or drying and repairing malfunctioning equipment if they could get
to the site in time.

Protection, remedies and surprise The two types of protection are labelled remedies in the
foldback graph above. Again, the nature of the protection appropriate and available to an asset
would be highly asset dependent. However, generically we could state that the greater the ex-
posure to water and the lesser the protection, the higher the probability of failure of any asset
would be. As mentioned above, although the types of protection an asset could be given depend
heavily on the asset considered, they could nevertheless be usefully categorised generically into
two types: protection present during an incident irrespective of whether or not engineers had
access to the site from remote locations; and those forms of protection that can only be provided
when there is access to the site.

So, the access that engineers might have to an asset before and during the incident could have
a significant impact on whether that asset eventually failed. Furthermore, the severe weather
conditions envisaged could well determine whether this access was possible. Finally, if electronic
communications between engineers tasked to protect the site further and the control centre were
disrupted, then even if engineers had physical assess to the site of that asset this may not be
enough to successfully protect or repair the asset and return it to functionality. So, in the foldback
graph there are directed edges between the remedies node, the access node and comms (a
node representing telephone communications).
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Finally, only if the incident were predicted in the hours before it occurred could the asset protection
be enhanced. So, if the incident were a surprise, then none of these mobile defences could be put
in place. We therefore introduced the vertex surprise in the foldback graph to describe another
critical component of the story. We later learned that (broadly stated) alerts for fluvial flooding
are typically given about 48 hours before an incident, although these would not necessarily be
acted upon. The timeline for alerts varies by flooding type. Note that this input would depend on
the ability of forecasting tools to predict accurately the incident in the hours before it happened
and communicate this to the asset owners in a timely fashion. So the inputs into this part of
the picture are rather different from the ones here labelled weather – which predicts in a more
abstract way the kinds of weather consequences a particular type of incident might have (within
a future climate) as this advances over the studied region: see below.

We note that were engineers and others able to obtain instructions and timely access before or
during the incident they could engage in one or more of the following activities:

• Repair or replace any water damaged equipment.
• Install back-up power.
• Relocate any currently operative mobile equipment to higher ground if failures of type 1. are 

threatened.
• Shield currently operative equipment with e.g. plastic sleeves or protect with sand bags.
• Install pumps to pump water away from the vulnerable parts of the asset or its on-site con-

nections.

Electronic communication disruption This falls into two categories; - the consequences of
the loss of phone lines because of the failure of telecommunications assets, and the disruption
to mobile and radio signals caused by the incident. Here this is denoted by the node comms. It
became clear from later elicitations that the comms node tended to apply mostly to smaller assets
– often larger assets operated largely autonomously. Furthermore, phone land lines were usually
backed up by satellite communications or radio. However, communication transmission failures
would always deleteriously affect operations of stretched assets, and would certainly impede or
slow down any remedial work.

Access to the site of the asset Experts tended in their general discussions to distinguish two
different scenarios:

• The highways leading into the site had been blocked either by infrastructure damage or
traffic congestion.

• The site containing the asset had itself has become inaccessible.

The most challenging of these bullets was the first. This was because the covariates that needed
to be used to describe these processes involved information about the local highway system and
its own exposure to the effects of the incident – an aspect of the problem not explicitly consid-
ered within the digital twin, so such information needed to be imported from elsewhere. The
relationship to the first is expressed explicitly in the foldback graph as highways.

The second was obviously affected directly by the flooding incident here labelled rain/flood.
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Note that access is useful for two different reasons:

1. Engineers can then inspect equipment and perform remedial action, and/or add new protec-
tions like encasing equipment in plastic, moving mobile equipment to higher ground before
it stops working, or repair a failing component.

2. It is then possible to transport new equipment in (like batteries) and/or out (like pumped-out
water or sewage).

We only later discovered that during a flooding incident engineers might need the permission
from the police crisis control centre to access a site. In major incidents this could be unlikely
because priority would be given to human safety over the repair of infrastructure damage.

Disruption of highways There were several problems associated with physical communica-
tions during a flood. Some of these were directly due to the flooding incident being simulated.
We notice here that, despite being critical to whether or not engineers might have access to sites,
we did not initially have data relevant to some aspects of infrastructure damage including:

• Loss of bridges.
• Roads made impassable because of surface water or flash flooding.
• Roads impassable because of traffic jams caused by people evacuating themselves from

the area or trying to return home to protect their property.

Again, in these circumstances the police control centre may well command that no assess would
be given to engineers.

Indirect threats to the functioning of assets caused by the incident Through the elicitation
sessions there were certain issues – labelled as indirect threats on the foldback graph – that
might lead to assets failing or being taken offline. The most critical of these are mentioned below.
Notice that each of these is relevant only to a small subset of the assets. It was nevertheless
important to include these.

• Run-off (especially of poisonous chemicals into water system from fields because of water
saturation or breaching of river/dam) into site [only relevant to water purity plants being
closed].

• Roads collapsing onto cables connecting to the site of the asset [only relevant to under-
ground cable junction failures].

• Cable ducts malfunctioning and filling with water exposing cable junctions to wetness [only
relevant to underground cable junction failures].

Flooding and rain events Through the design of the incidents considered in the model, the
states of the vertices; indirect threats, asset wetness, communication disruption, blockages in the
highway system and accessibility of the site, were all determined by the amount of flood water
that was invading the area of study - here defined in the foldback graph as rain/flood. The major
events resulting from extreme rainfall can be usefully identified as:

• Flooding due to breaching of river defences or a dam bursting – especially threatening
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flood plains. Notice here that flooding is not only a function of river water level, but also the
condition of the defensive walls and other infrastructure to hold back water.

• Flash flooding occurring at various sites.
• Flooding due to sea level rise at high tides and the breaching of sea defences.
• Periods of torrential rain over the asset directly exposing it to water.
• Ground saturation by site. Note here that the season would have a big impact on soil

saturation – in the summer there would be much less risk. This affects the impacts of the
flash flooding, the speed of transportation of the water to threatened assets and increases
the threat of run-off from chemicals.

Weather The root causes comprise both the explicit nature of the weather within the incident,
and the extent to which it can be forecast. Features characterising such weather causes would
be:

• Storm features which were not about precipitation: these would include high winds – in
particular the maximum wind speeds occurring around overhead power lines feeding the
assets in question and lightening strikes. Sudden changes in temperature could also cause
failure of communication cables.

• Recent history of precipitation before the incident in the month preceding the incident would
be important because this would affect the saturation of the ground. This information will
also be important in regions upstream of rivers passing through the region because this will
affect flooding risks.

• River levels at the time of the incident would be a better surrogate for information about
flooding risk – rendering the rainfall history upstream of the river in the area irrelevant to the
predictions we need. Note that these river levels will depend on the season in which the
incident might occur.

• Torrential rain which might lead to flash flooding near the site of the asset considered and so
indirectly threaten assets. We note here that the probability of underground cable junctions
failing is greater when there is very heavy rain after a long dry spell.

We notice in the above that the probabilities in the model will typically need to depend on the sea-
son in which the incident happens and also the time of day (for example to model likely highway
congestion).

Comments on this initial phase One point that was made during the elicitation sessions was
that when one of the three asset owners, or others – like the highway department – were engaging
in renovation or maintenance of infrastructure at the same time as a severe flooding incident then
this could have a dramatic negative effect on the resilience of the network. Although it was felt that
for any strategic analysis such work could be modelled separately – modelling the structure and
interconnections directly onto the network in the process of being repaired – it would nevertheless
be critical to bear this in mind in any proper analysis.

The key message here was that any realistic probability model of the consequences of extreme
flooding events must consider events happening around an incident, as well as simply the flood
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itself. So, flood modelling of a given incident will not alone be sufficient for prediction; for re-
alism in a full model we would need to label each incident with other covariates which capture
the threat posed to the different assets. Sometimes the information provided from the additional
sources would be greater in volume than the information describing the flood itself. Some of these
covariates would be embellishments of the simulated incident, whilst others would be elicited de-
scriptions of the environment of the asset and descriptors associated with the time of the incident
(e.g. the season and the time of day).

Note that although we need a considerable amount of expert judgement here to embellish these
mechanisms, there will be data from previous flood incidents elsewhere, from the testing of equip-
ment, and from failure data together with flooding exercises, which could be used to benchmark
the probabilities elicited from experts and in some cases to combine these formally into the model.

Using the traceback graph as the prototype discrete BN to be implemented in code, we next
explored how sampling configurations of the probability distribution of failures could form a com-
ponent of the digital twin of flood impact.

3.3 Embedding a prototype BN into the digital twin
Taking the discussions described in the previous sections of this report and translating them into
automated computer programmes to perform this analysis on-demand is a significant aspect of
the innovation of the CReDo project. While the expert discussions can be successful in draw-
ing out a cohesive framework of causal connections described through a graphical structure,
translating these discussions into a bespoke software package required careful thought and de-
velopment.

The first step in this process was for the software development team to be involved in the re-
quirements gathering process. Staff at the Hartree Centre had experience in statistical modelling
and software design, and familiarity with both of these concepts was important. The language
used to describe the models built through discussions with the asset owners is that of BNs, which
are a rich topic in statistical literature. The software team had familiarity with Bayesian statistics
and a background in using these models for simple applications. There was extensive experi-
ence in writing custom packages for new applications in data science, and implementing these
across systems. This gave them sufficient background to engage with the academic leads to
translate their ideas into code, and to visualise the constraints and possibilities which came from
the computing resources available.

Initial discussions across the expert elicitation team allowed for knowledge and requirements
to be shared across differing domains of expertise. It was important for the software team to
identify the required inputs and outputs to the model, and what aspects needed to be modular.
For example, the knowledge extraction in the first part of the project meant that we needed to be
flexible throughout on the exact shape of the BN, so any tools used to build the BN needed to
allow for adding and removing connections at a future date. The model needed to be updated
through reading the knowledge graph for data on an asset, updating the corresponding nodes
and extracting updated probabilities, so it was necessary that the package had this capability.
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After an initial search, the python package pgmpy [16] was identified as well suited to our needs. It
allows the user to construct BNs through inputting a list of probabilistic connections, and to define
the conditional probability tables for each node of the network. It is predominantly designed for
use with tabular CPTs, meaning those with discrete inputs and outputs. As the model consists of
many of these, such as the binary presence or absence of a flood defence, this is well suited to
the task. The small number of continuous variables, such as the flood depth at a location, which
can take any real value, can be allocated to bins before incorporating into the network. This had
the benefit of allowing the expert elicitation team to focus on flooding risks for water levels within
an arbitrary range. The presence of tabular CPTs did not prohibit the use of continuous functions.
If the probability of an event was described by a continuous function, it is possible to map this to
discrete bins through averaging outcomes within a given bin and populating a CPT this way.

The process to produce digital representations of the information above began. As the software
team had a familiarity with BNs, they could interpret designs and explanations given by the project
leads and implement these. For example, if a discussion had led to learning that a flood was
likely to damage an asset, but that protection would prevent this, the required structure could
be defined and software implementation begun. This meant writing code to define each node
and the relationships between them. As only one node type was used for each node, all were
defined using the same TabularCPD function within the pgmpy package. Identifying the outputs
of each node, and the other nodes which contain the data to inform the probabilities of these
outcomes, is sufficient information. The software team used an iterative process of presenting
proposal networks and receiving feedback, to construct networks which progressively got closer
to the desired level of representation of the system.

An example BN, for a particular asset class, is shown in Figure 3, the result of several rounds
of discussions with asset owners and the elicitation experts. This BN is a particular case of the
generic BN structure in Figure 4, which is detailed below. The network contains nine nodes defin-
ing some of the complex combinations of factors which define whether this asset is operational.
This graph displays the relationships present within the pgmpy model and is a direct representa-
tion of the code. This information came from discussions between the CReDo expert elicitation
team and the asset owners, with no previous constraints on form, demonstrating how complicated
structures can be described through careful conversations with domain experts. For example,
it became apparent that there was a possibility than an engineer could attend the site and add
protection to the asset, given sufficient warning. This is incorporated in the model through the
"EngineerAccess" node and the "AddProtection" node, as this event is a combination of the two
events.

Each node is defined by a series of probabilities of the outcomes given the input data - "Water-
Ingress" is defined as the probability of water entering key systems, for a series of water levels at
that asset, which are in turn defined in the "SubmergedLevel" node. Table 1 shows a complete
table describing this node, defining the CPT. It is necessary to define all possible input values to
a node, and all possible output values. Probabilities need to be defined for all possible outputs
in the case of all possible inputs, such that all combinations are defined. Probabilities within a
column must sum to 1, as for a given observed water level, all possible outcomes are defined
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by the node. It is easy to imagine how these tables can grow in size in the presence of a lot
of possible input and output categories; this is a common issue with BNs and careful thought is
required as to what form of CPT is appropriate for the problem at hand.

If information is observed, we pass this to the network. This is done by assigning observed values
to the corresponding nodes in the network, and this has the effect of updating the probabilities in
other nodes in the network. To return to the example in Table 1, with no information the probability
of water ingress is assessed by considering the probability of flood occurring at each depth. In
the presence of information about the flood depth, we can update the likelihood of water ingress.
If we observe that there is no flood, we know that ingress is unlikely, but if we observe a high
level of water, we can pass this to the network so there is a high probability of water entering
the system. This propagates through the network, where information about the depth of water
at the "SubmergedLevel" node informs the properties of the "WaterIngress" node, which further
updates whether or not a "FloodFailure" is expected to occur. Flood simulations provide expected
and maximum water levels at locations within their coordinates, and these can be mapped to
assets. The water level would map to the BN by assigning this value to the "SubmergedLevel"
node when evaluating the probability of failure for the asset. Through observations made in this
fashion, it is possible to extract further information about the functioning of an asset through the
combination of data points and probabilistic structure identified by domain experts.

"WaterIngress" node
"FloodDepth" node value (metres)

Outcome x < 0.0m 0.0 < x ≤ 0.2 0.2 < x ≤ 0.4 0.4 < x ≤ 0.6 0.6 ≤ x
P(Water ingress) 0 0.17 0.5 0.83 1.0
P(No ingress) 1.00 0.83 0.5 0.17 0.0

Table 1: An example of the tabular structure in the nodes in the BNs constructed. The values are initial placeholder
values for the "WaterIngress" node in the network shown in Figure 3. The node can have two possible outcomes (either
water ingress is present or it is not), and this probability is dependent on the level of water present at the "FloodDepth"
node. Tables like this allow us to account for this variability to an arbitrary level of precision, as we can define as many
bins as desired. These probabilities are encoded into the network in the way shown in this table. Once these are stored
on the node, the model can return expected outcome probabilities given the observations assigned to "FloodDepth".

The final stage is to combine the information in the knowledge graph, incorporate it into the BN
and extract failure probabilities based on the information. Data was stored in the knowledge graph
describing key information about the assets, and this was accessible to the graphical model. The
model is designed to both function as an independent piece of software, capable of evaluating
probabilities in a self-contained way, and to run within part of a larger workflow of composite
components. The workflow model created by colleagues at DAFNI consists of chaining together
many similar components, so each component must adhere to common input and output forms.
In the code, this meant that software was written to assume access to a json data store containing
information updated about all assets, and to save a file in the same format as an output. This
output is read by external components to update the central knowledge graph before progressing
along the workflow. This single, consistent reference point was important to make the model part
of a pipeline of individual components. Storing data in this format meant that this BN is unaffected
by the particular approach used to generate the flood data, or any further analysis with the output
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of the model. Instead, it is only required that data is stored within this central database in a
consistent fashion, allowing a modular software design. It is simple to swap the probabilistic
graphical model used; if it is later established that there is an alternative model which captures
more of the phenomenology, we can change this with no impact on any other components of the
system.

With the information about the assets available, the network models built using pgmpy can be
used to calculate updated probabilities for each node. In the case of the network in Figure 3, the
node of interest is "AssetFunctioning", as we update the knowledge graph with the probability
that the observed information leads to the asset failing. However, the network consists of many
variables forming a large joint distribution of probabilities, and we need to marginalise over these
to get to the distribution of interest. We extract the probability distribution for one node using the
VariableELimination algorithm. By specifying the node of interest, the algorithm systematically
marginalises out variables from the joint probability distribution until only the relevant marginal
distribution remains.

Figure 2: A code snippet demonstrating the querying function within the pgmpy package. This shows the commands to
extract the probability distribution of the "AssetFunctioning" node in the box at the top, with the outputs shown in the
lower part. Running the commands above assumes the absence of any further data, relying on the information present
in the node CPTs. Additional information about nodes in the network can be passed to the infer.query() command to
allow evidence to be incorporated into the BN.

For integration onto the DAFNI platform, the code required to run and evaluate the network was
written into a Docker container. Docker containers contain the information which defines the
software environment required by the code, and a series of commands to run. When these
containers are created, they build a version of the required environment and run the specified
commands. A container was defined with the required python environment, location of the code,
and a python script which queries the knowledge graph and outputs failure probabilities. This
was uploaded to the DAFNI platform, able to be run at any point. The complete codebase is
available in the BN repository created for this work [17].
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Figure 3: Visualisation of an example BN built using the pgmpy package and visualised with the networkx package. All
causal relationships present in the model are displayed. For an example of the probabilities contained on a node, see
Table 1.

3.4 From a generic traceback graph to specific BNs

3.4.1 Building probability models around the foldback data

Having elicited the coarse structure of the causal mechanisms underpinning these processes,
we now examine each of the variables depicted in the graph to define measurement variables
(variables which can, in principle at least, be measured/observed). We then draw a BN whose
topology is related to the foldback graph but whose vertices are formally defined. This enables
us to use the BN to interrogate the heuristic model above and adjust this as necessary.

Here it is necessary to work in the reverse order to the one we used to build the foldback graph:
this time working up the casual pathways from the founder nodes until we reach the failure event.

Once this is completed we will be ready to populate the CPTs of the BN, and so specify the
numerical form of the probability distribution of the failure events of each asset. Sampling from this
distribution will then enable us to emulate the probable consequences on the mutually dependent
collection of assets, for the whole area of study, and for each simulated run of a given incident.

From this point, because the causal pathways associated with the failures of different types of
asset could be very different from each other, it was most natural to build a BN for each of class
of assets in turn. Some of these BNs would have a very simple topology, while others would be
much more complicated. However, they mostly share those parts of the description that define
the impacts the flood has on the environment around the assets at different locations – those
associated with the spread of the water, the geography of the region, and the external infras-
tructure and highway configuration, will all apply equally well to one asset as to another. There
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is however an issue of determining which descriptive measures that might be imported into the
system – both concerning the specific incident and also the surrounding environment – are the
most appropriate when tracing that incident to its impact on the asset failures in the network.

The critical issue here is to ensure that we can define the variables in such a way that the BN G is
a valid description of the domain for each asset considered see e.g. [10], [9]. The graph needs
to be interrogated with the experts to check this, and if this is not so its topology must be adjusted
until it is.

To be valid, for all nodes in the directed graph not downstream of one of its variables, X must be
independent of those nodes given its parents – i.e. those nodes in the graph connected into X

by a directed edge. This needs to be true for all nodes X. A careful description and illustrations
of how one can work with panels of experts and iteratively modify G is given in [9]. This process
is a particular example of a structural elicitation, see e.g. [11]. We give examples of two such
elicited BN’s below.

3.5 Later cycles of elicitation embedding asset information
and emergency response

Later cycles of elicitation enabled us to interrogate the broad structure of the BNs and to precisely
define the random variables in the model. There were three types of elicitation that now need to
be conducted.

1. Within the CReDo project, another team had been systematically forming inventories in the
form of spreadsheets of different types of asset using a common template across the three
companies, listing vulnerabilities of each asset type to failures associated with flooding.
This precious source of information enabled us to critique and embellish the generic BN
described in this section, so that the variables within it could be more precisely defined in
terms of measurements and unambiguous categories. It also gave us a reliable framework
on which to build a BN for an illustrative asset, which would build into this description other
features concerning the vulnerability of a specific asset associated with its location and
installation

2. It was clear that the functionality of the system would critically depend on the way that
different crisis management teams within each company would routinely respond to a flood
alert and a flooding incident. We therefore interviewed a team of such professionals from
one of the companies. We learned about the specific ameliorating actions that would be
possible and how these were applied. These have now been embedded in the descriptions
of flooding events given in Section 3. One of the key generic points that we were able to elicit
was that the implemented preventative countermeasures would typically depend upon the
human resources available, and that priority would be given to those assets whose failure
would cause the worst immediate impact to customers. We noted that this policy was not
one optimising the functionality of the network, but rather minimising the disruption to the
company’s customers, appropriately prioritised; these two criteria could be very different.
One take-home message was that even if there was time to further protect an individual
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asset, this might not happen simply because of available resources – so probabilities of
extra protection being applied to any non-critical asset were likely to be considerably smaller
than might otherwise have been the case.

3. In the final series of elicitations concerning a specific asset, various generic issues were
drawn out. The most critical one was that we belatedly learned that once the crisis began
engineers would have to receive permission from a police crisis control centre to be given
access to repair or replace equipment to return their equipment to operability. Because the
centre would typically prioritise human safety over the fast return to service of infrastructure,
this would inhibit the speed at which engineers could respond even if repairs were techni-
cally possible. This point – although not critical to the specification of the present snapshot
demonstrator – would be critical to any subsequent dynamic BNs as would other issues
they raised (see Appendix B). It could dramatically slow down the return to normal working
of each asset. Other remarks pertinent to our snapshot BN have been embedded into the
discussion above.

All these issues would need to be addressed within the digital twin for this to provide a high-quality
analogue of the effects on a network of given flooding events. In particular, we needed to modify
the original BN and to transform this to the version provided in Figure 4.

Figure 4: The modified generic BN for the probability of failure of an asset in an extreme flooding event.
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4 Eliciting a BN of a specific asset

4.1 Introduction
There were two reasons to dig down during a single well-defined incident at a specific asset.
Through this use case we could further check whether we had missed any critical generic features
which would challenge the credibility of the prototype digital twin and the generic BN describing
how failures might respond to certain extreme flood scenarios. It would also give information
about how easy it would be to populate the BN with well-calibrated probabilities (at least in its
snapshot form).

The initial model we had built into CReDo was naive. It was deterministic and assumed that an
asset would fail if the maximum flood depth exceeded a particular threshold depth at the site
of the asset. However, the real failure process was much more nuanced than this. We had
demonstrated how a stochastic version could improve on this type of model. Here, by eliciting
expert judgements about how specific assets might fail during certain incidents and embedding
this information in a bespoke BN, we could demonstrate how the probabilities within the stochastic
model could be calibrated to real expert judgements, and so better predict the real impact on
the network of selected extreme incidents. In particular, by examining a particular scenario in
detail we would be able both to draw out additional features more clearly and also to build in a
better understanding of the mechanisms that might lead to failure that would then help frame the
probabilities of such events.

To illustrate how the original generic model could be calibrated to each pair of asset and incident,
we chose to generate the flooding conditions associated with a single event. We then identi-
fied a single asset which was vulnerable to failure when exposed to this event, and forensically
investigated the different ways this asset might fail. The chosen asset was a pumping station
located north of the town, and the flooding event one which threatened to break through the flood
defences of the nearby river. We would then proceed to demonstrate how the BN of this asset
could be adapted to its threat, and how standard Bayesian methodologies could then be applied
to elicit the probabilities needed for its CPTs to quantify its probabilities of failure under a number
of scenarios. The only probabilities we would elicit would be those related to a specialist team
drawn from the water company.

We first briefly outline the technology harnessed to elicit the probabilities need to embellish the
BN of this problem, and hence deliver a quantification of the uncertainties in the flood as these
applied to the given asset.

4.2 A methodology for eliciting probabilities
The probabilities required for the elicitation in this case are those that are required for all of
the CPTs in a particular BN. In general, quantitative expert judgements should be elicited in
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a structured, transparent and reproducible manner. To ensure that our probability elicitations
satisfy these properties in this project, we utilised the Sheffield Elicitation Framework (SHELF)
for the elicitation sessions. SHELF is an elicitation protocol which aims to elicit probabilities from
a group of experts in such a way that the result represents a consensus of the judgements of the
experts; they are owned by a synthetic expert, known as the Rational Impartial Observer (RIO).
The session itself comprises two stages: elicitation of individual probabilities from the experts,
and elicitation of the group, or consensus, probabilities, arrived at through facilitated discussion
amongst the experts.

By probability in this context we mean the subjective beliefs of a particular individual about how
likely an event is to happen. Therefore, given the same information and asked for the probability
of the same event, two individuals may provide different values based on their own knowledge
and expertise. Hence the need to come to consensus via discussion.

Consider the probability that a particular asset fails in a particular future flooding scenario. Interest
lies in the value of an indicator variable I which is equal to 1 if the asset fails in a particular
scenario and 0 if it doesn’t fail (or some other binary event in a CPT) . Then the entire probability
distribution for the failure of the asset is captured by a single probability, that is Pr(I = 1), the
probability that the asset fails (and the probability that the asset does not fail follows as Pr(I =

0) = 1 − Pr(I = 1)). This necessarily captures all of our uncertainty on whether the asset will
fail on a particular occasion, both our epistemic uncertainty about the underlying proportion of
similar occasions on which the asset would fail, and our aleatory uncertainty about what would
happen on this particular occasion.

More comprehensively, we could consider these two aspects separately. That is, we could ask
the experts to consider a large number of very similar future scenarios of the same type as that
being considered in the same location, and ask for the experts’ beliefs about the proportion of oc-
casions on which the asset would fail, which we call p. Questions about the three quartiles of this
distribution, for example (the values for which the expert gives probabilities of 0.25, 0.5 and 0.75
to p) would then allow us to fit a suitable continuous probability distribution to the proportion, for
example via least squares. We would then obtain Pr(I = 1) by integrating over this distribution,
i.e.,

Pr(I = 1) = E[p] =

∫ 1

0

f0(p)dp

where f0(p) is the prior distribution for p. Given the time constraints in the CReDo project, we
chose to elicit Pr(I = 1) directly, although we could explore the more comprehensive strategy
via f0(p) in future iterations.

Another important aspect is that CPTs are structured as categorical variables, such that the prob-
abilities in each column must sum to one. For example, we may consider the probability that a
particular flood defence is fully working, partially working or failed under various flooding con-
ditions. This means that we cannot elicit all of the probabilities independently, as it would be
unlikely that they will satisfy the sum to one constraint, especially with larger numbers of cate-
gories. Instead, we chose to elicit all but one probability in each column of each CPT, and report
the resulting final probability (given by one minus the sum of the others) to the experts to check
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that this is consistent with their beliefs. If not, then other probabilities in the column would need
to be re-elicited.

Given the time constraints in the CReDo project, and the large numbers of probabilities required
to populate the CPTs, we used a "simplified" version of SHELF. We used a spreadsheet-style
data entry rather than the more interactive elicitation tools available through SHELF, and used
the final probability in each column as the sole check of each set of probability statements. A
full SHELF elicitation would take place more comprehensively in a future iteration of the CReDo
project.

4.3 Modelling of a specific asset and incident

4.3.1 Refining the generic structural BN to a critical asset

Before we elicited any probabilities, we first examined the original BN to check whether and how
well it described what might happen to the chosen asset in the chosen incident. The additional
generic information this elicitation extracted has already been summarised in an earlier section.
Here, we therefore focus on the information relevant to this particular asset and incident. For
the next version of the development of the digital twin we would envisage calibrating all the most
integral assets, and customising failure probabilities to the specific relationships between their
function, the location and siting of their most vulnerable components, and the cascade of events
that would eventually lead to failure. The following information about the given asset were critical
in assessing its probabilities:

1. Pumping stations can continue to function mechanically but nevertheless be ineffective in
the role that they are designed to do. In this sense it is important to decide when the asset
can be considered to fail for the purpose of the network for this type of asset. Here, through
discussions with experts it was decided to consider both events – it being ineffective and it
mechanically failing and the corresponding joint probabilities.

2. Because of the nature of the chosen extreme incident and the location of this asset, there
was in fact a high probability that the pump would be overwhelmed. So, in this context the
most important probabilities to elicit were the probabilities of mechanical failure given the
pumps were overwhelmed.

3. Pumps like these are built to withstand exposure to water. So, when a power supply re-
mained in place the failures of the pump caused by the flood would be mainly due to the
electronics inside the station being exposed to water so that the circuitry was fried. One
dominant set of probabilities would be for the train of events leading to such events

4. For water to reach the circuitry within the main plant it must first pass through the dry well
surrounding the plant.

5. For this to happen the flood water must first break through any barrier protecting the station.
6. Another type of failure would be caused by the electronic junctions on the transformer feed-

ing the asset being exposed to water.
7. Extra protection could increase the effective overtopping height from 900mm to 1200mm -

although this extra protection is not completely reliable and might not be available.
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8. If power into the plant were disrupted back-up diesel generator and batteries are in place.
However, either of these may be unavailable because of theft.

9. If the back-up power is used when the vulnerable parts of the asset are exposed to water
downstream of the alternative power source, then the asset will continue to fail.

10. The mechanical failure of the back-up and operation of this plant is unlikely to be affected
by a loss of communications because all systems can work on an automatic default.

11. All the vulnerable parts of this asset are located inside it, and so are unlikely to be disrupted
by storm damage.

12. Access to perform remedial work during an incident like this is unlikely because access is
likely to be needed to be made via other affected areas, and because during such incidents
such access is unlikely to be granted.

4.3.2 Events of interest

The company would usually be given 48 hours’ notice of an incident. We chose to bin predicted
maximum depths of flood water into the categories

D = {{0} , (0, 500], (500, 900], {> 900}}

because we learned that the permanent flood barriers if fully secure would provide protection up
to a depth of 900mm. Flooding on the site which was significant but not overtop the barriers and
might seep through was thought to be well expressed as flooding in the range (0, 500].

Here, we denote the probabilities properly delivered by the water company by p, whilst the others
denoted by q. Within the context of the type of incident studied, we elicited the following:

1. The probability that the pump was overwhelmed given different levels of consequent flood-
ing at the site po(o).

2. The probability water would breach the barriers and trespass into the wet well, and then the
wet well would become full and water seep into the inside of the building, given a breach
of the barriers, the effective barrier height and the pump being overwhelmed, for different
depths of the floodwater at the site d ∈ D, pb(b|h, d), d ∈ D.

3. The probability that the electronics are fried, given water in the building pe(e|d), for different
depths of flood d ∈ D when the pumps are overwhelmed.

4. The probability that the main power supply upstream of the station is off, pu for generically
measured flood conditions f .

5. The probability that the transformer into the plant will be compromised qt(d), d ∈ D given
the different depths of flood, so the main power supply is cut off.

6. Given an upstream power failure (probability qm(f)) the probability that the back-up fails to
operate pc when the asset would otherwise be functioning.

Because many of the possible causal features leading to failure under this incident are not relevant
for this asset, the BN can be much simplified such that the CPTs for the failure events are elicited
below. Notice here that all the inputs associated with the node defined here as flood depth
would, within the IDSS digital twin, be obtained from flood models, while some of the probabilities
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associated with the presence of back-up power will be the domain of the power company. So,
these probabilities would not be part of the elicitation. The simplified BN used for this asset is
provided in Figure 5.

Figure 5: The BN adapted for the probability elicitation at the town’s pumping station.

The inputs to the digital twin with its current architecture require us to calculate the probability
p∗(d) the asset will mechanically fail and be overwhelmed by the incident given the various depths
of flood d ∈ D.

In this case using the definition above, this is the probability of the pump being overwhelmed
and the asset having an electrical failure p∗1(h, d) or when there is a power failure into the plant
that cannot be remedied p∗2 when the asset would otherwise be functioning. The usual rules of
probability therefore give us that

p∗(h, d) = p∗1(h, d) + p∗2(h, d)

where, by the usual rules of probability and the definitions above

p∗1(h, d) = po(o)pb(b|h, d)pe(e|d)

p∗2(h, d) = po(o)(1− p∗1(h, d))(qm(f)pu + qt(d))

Note here that because in the setting described by the incident the probability of the pumps being 
overwhelmed was very high, p∗(h, d) is also approximately the probability the asset mechanically 
fails; i.e. the probability when the flood no longer inhibits the proper working of the pump - the 
pump nevertheless can no longer do its job.

4.4 The results of the probability elicitation

4.4.1 Overview

There were four experts present for the elicitation, all employees of the water company taking part 
in the CReDo project. For each probability detailed above, an individual elicitation was conducted, 
followed by a group discussion and then the elicitation of the consensus probability representing 
the RIO. The elicitation session lasted for two hours.
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A briefing document was provided to the experts prior to the session, and is given in Appendix
D. The session began with a summary of the information in the briefing document, followed by
a training elicitation question considering the distance between Glasgow and Edinburgh. When
the experts were happy with the process, we began the elicitation of the quantities of interest
(QoIs) detailed above. A break was provided in the middle of the session.

The time constraints were tight given the number of probabilities to elicit, and so the cut down
version of SHELF described earlier was used to elicit the probabilities. The individual probabilities
and the consensus probabilities from the elicitation are provided in the top panel of Table 2.

The scenario considered in the elicitation, was defined in the briefing document as

A 48-hour warning of a convective storm surge around the town is given during the summer. This
is predicted to last for up to 23 hours with higher peak intensity around the centre of the storm.
This will occur when there is an above-average high astronomical tide and sea level rise due to
climate change. It is predicted that this occurs concurrently with associated wave overtopping of
coastal flood defences and high tide in the river. There is a risk that the level of the river will be
sufficiently high to threaten overtopping, although it is unlikely to be overtopped in the 23-hour
period. We are interested in the threat to the pumping station.

EA flood information is made available only after the incident has happened.

4.4.2 Rationales for the values chosen

The probability that the pumps were overwhelmed given flooding at the site, po(o), was considered
first. The experts felt that, within this scenario, the flood depth outside the site would not affect this
probability, since when there is standing water of any depth building up around the site, then this
indicates a flooding event which is very likely to overwhelm the pumps. The only time this would
not occur would be when the flooding did not then infiltrate the network. Thus, the consensus
probability chosen was high.

The second probability elicited from the experts was the probability of a complete pump failure
in the scenario. In this case, the experts did believe that this probability would change with the
changing flood depth. They drew the distinction between a flood depth of below 900mm and
above 900m. For a flood depth below 900mm they gave the probabilities in the row pf in Table
2. In particular, they felt that if the protected barrier was not over-topped then a failure was not
inevitable, although this indicates that there would be a lot of water moving around near to the
station (e.g. the height of the river and the amount of water moving through the sewers), and
water typically finds a way in. For a flood depth of more than 900mm it was felt that, with the
water over-topping the barriers to the station, a failure was inevitable, as long as the barriers
were over-topped for a reasonable length of time. Thus, only a consensus probability is reported
for this situation.

The experts then considered the probability that the back-up generator is unavailable in the event
of being called to operate. Call this pg(g). The generator is automated and so no access is re-
quired. The transformer would have failed to call this back-up generator. However, the trans-
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former is off site without flood protection and the back-up generator is onsite protected by the
flood defences at the site. The experts considered the half a dozen or so reasons a generator
wouldn’t start, and data on generator starts from within the company. Taken together, this led to
the consensus probability chosen.

The elicitation then moved on to the probability that the electronics are fried given that there is
water in the building, pe. The original question was termed in terms of a “fire”, although from the
discussion it was clear that frying the electronics was what this referred to. Again, the experts felt
that this would be similar irrespective of the flood depth outside the station, given that water had
somehow made its way into the station. There was relatively strong disagreement in the individual
expert probabilities for this question, ranging from 0.05 to 0.7. In the discussion, the expert who
gave the highest probability provided information about the relative frequency of electrical fires in
similar flooding events previously, and the consensus converged to their probability.

The final two probabilities considered were the probability that, when called for, the batteries
have been stolen from the back-up generator, ps, and the probability that the diesel has been
stolen from the back-up generator, pv. There was a feeling in the group that one of the experts
held almost all of the knowledge on these probabilities, and so we moved straight to consensus
probabilities for these events. The two types of theft happen separately and so it seemed reason-
able to the experts that they could be deemed independent. A combination of the information on
the frequency that generators are checked on average (around once a month) and the number
of occasions in recent years that diesel and batteries have been found to be stolen, led to the
probabilities specified.

Top panel: Probabilities elicited directly
Probability Expert 1 Expert 2 Expert 3 Expert 4 Consensus

po(o) 0.9 0.99 0.99 0.7 0.95
pf (f | h = 900, d ≤ 900) 0.5 0.35 0.1 0.5 0.425
pf (f | h = 900, d ≥ 900) ≈ 1

pg(g) 0.8 0.8 0.85 0.85 0.8
pe(e) 0.7 0.25 0.05 0.2 0.7
ps(s) 0.02
pv(v) 0.05

Middle panel: Probabilities calculated from those elicited
pc(c) 0.26

p∗1(h = 900, d) 0.66
p∗2(h = 900, d ≤ 900) 0.10
p∗2(h = 900, d ≥ 900) 0.27

Bottom panel: Probability of pumping station failure
p∗(h = 900, d ≤ 900) 0.76
p∗(h = 900, d ≥ 900) 0.92

Table 2: The individual and consensus probabilities elicited during the probability elicitation session (top panel), the
consensus probabilities calculated from the elicited probabilities (middle panel) and the estimated probabilities of
pumping station failure (bottom panel) for different flood depths.
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4.4.3 Estimates resulting from the elicitation

From the consensus probabilities elicited, and provided in the top panel of Table 2, we can cal-
culate some other probabilities of interest. They are provided in the middle panel in Table 2.

The first is the probability that the back-up fails to operate when called on, pc. This takes as inputs
the probability that the generator starts successfully (with all parts present), pg, the probability
that the batteries have been stolen from the generator, ps and the probability that the diesel has
been stolen from the generator, pv. Assuming independence between these probabilities gives
the probability pc. We see that the back-up generator will work when called approximately three
quarters of the time.

We can then find p∗1(h, d), the probability of the pump being overwhelmed and the asset having
an electrical failure. None of the individual probabilities that make up this probability were felt
by the experts to change with flood depth (in this scenario for this pumping station), and so this
probability does not change with the flood depth. We see that the probability is relatively high,
at around two thirds, which is consistent with the view of the experts that a scenario such as
this, with standing water outside the station, would represent a severe challenge to this pumping
station, in terms of keeping water out.

For the probability p∗2(h, d), that there is a power failure into the pumping station when the station
would otherwise be functioning, we require estimates for the probability that the transformer into
the plant will be compromised, qt and the probability of a power failure prior to the transformer,
qm(f)pu. These were not elicited, and so we choose some illustrative values here to allow calcu-
lation of the probability p∗2(h, d). In practice, we would ideally elicit these values from the power
network operators. We choose values of 0.3 and 0.8 for the probability that the transformer is
compromised given flood depths of less than 900m and more than 900mm respectively, which
are relatively high as a result of the lack of permanent flood defences at the transformer. We
suppose that an upstream power failure is unlikely in this scenario, and so give it a probability of
below 2%. The resulting values of p∗2(h, d) for the two different flood depth ranges are provided
in the table.

Using the formulas in Section 4.3.2, we can then evaluate the overall probability of failure of the
pumping station. This is given, for the two flood depth ranges, in the bottom panel of Table 2. We
see that the probability of failure is high, irrespective of flood depth. This is because the failure
event which is most likely is an electrical failure, and this would be likely as soon as water entered
the pumping station, which in this extreme event, and given the location of the pumping station,
would be likely no matter how high the standing water outside the station.
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5 Recommendations

We have been able through this study to demonstrate how Bayesian methods can be applied to
set up a well-calibrated digital twin. There were a number of lessons learned from this exercise
that would frame the next stage of development of a digital twin.

1. Much more realism could be obtained through building a dynamic version of the simple
model we have described above, which would have more use for strategic planning as well
as real time decision support.

2. One critical omission of network information into the digit twin described here was the net-
work of highways that provide access to the assets. This would be critical to any appraisal of
the severity of the consequences of the flood, due to the importance of access for restora-
tion of assets to service once they have failed. This would be especially important for any
dynamic extension of the tools we describe here. We would recommend the inclusion of
highway networks in any next phase of this development. One issue here will be availability
of data on roads – for instance is enough detail on topography available to determine where
roads actually flood (e.g. in dips), is there good data available on drainage systems for
roads, and how would we model the likelihood of drainage systems not performing as they
should?

3. A realistic assessment of the effects of a flooding incident needs to bring into the conver-
sation other events associated with an incident that might be unfolding, because failures in
the system might well be caused by other events, such as high winds causing power supply
cables to be lost. Although not common in standard flood risk analyses, we would urge
that such coincident events be considered. This may require richer data to be associated
with the design of storm events beyond precipitation, and climate models to be calibrated
for coincidence of rain, wind etc.

4. It might appear that it would be an enormous task to populate this probability model. How-
ever, it should be noted that provided the relevant joint probabilities of failure are in the
right ballpark – and the extension of the conversation formulae induced by the BN will help
ensure they are – then extrapolating across a few cases should ensure a well calibrated
model. The stochastic digital twin therefore presents a real promise as an evocative tool to
help guide strategic planning. Note that the decompositions associated with the BN enable
many what-if analyses of the efficacy of various protective measures designed to mitigate
increasing flood risk – like re-siting of vulnerable infrastructure to higher ground.

5. We believe that the methods used here are very important to building meaningful digital twin
models, as illustrated by the detail of failure modes formalised based on expert knowledge in
the elicitation process. One challenge associated with wide deployment of these methods
is that the relevant skills are not widespread even in the statistics and decision analysis
research communities – to take advantage of the methods across the industry it would be
necessary to provide protocols and software tools to help make them accessible to a wider
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range of analysts, and possibly develop the skills base in statistical modelling.
6. There is nothing about the technology defined here that could not be adapted to provide a

real time digital twin that could inform a crisis control centre with critical information concern-
ing the unfolding threat posed by an actual extreme incident happened - helping to identify
those combinations of assets across different asset owners whose failure might have the
most catastrophic effects on the consequences of an incident.

We hope we have demonstrated through this study how probabilistic digital twins can be de-
veloped for better understanding the impacts of the increased flooding risks driven by climate
changes and the ways these might be used within the strategic planning of asset owners to bet-
ter ameliorate these risks. In future studies we plan to develop more sophisticated tools to provide
exactly this type of support.
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A Appendix: From a BN to a factorisation
formula and a transfer function

The beauty of the BN once they have been drawn is that enables the calculation of explicit proba-
bility distributions as a function of the inputs of numerical descriptions of the contributing parts of
the network and its embellishments for each emulated incident. We give below the formulae that
enable us to calculate the joint failure of a particular asset given the critical features that define
the dangers presented to the asset form a particular unfolding incident.

So suppose that G(a) is a valid BN of an asset whose m nodes/ random vectors are{
Y1,T (a), Y2,T (a), . . . Ym−1,T (a), FT (a) ≜ Ym,T (a)

}
where FT (a) denotes the indicator on the failure of an asset of type a ∈ A at time T. Let the
vector of parents of Yk,T (a) in G be denoted by Zk,T (a), k = 1, 2, . . . ,m. Each asset as located
at a site s ∈ S will have associated with it a certain set of covariates xs describing features like
its location, height , protection and its connections to other assets in the network - by type.

We now consider a future flooding incident j that has been generated as a possible future event
in a potential climate changed environment described through one of the climate scenarios. The
scenario faced by this incident will be labelled by two time series. The first

{
xi
t(j) : t = t0, t1, . . .

}
provides the time series provided by the weather/flood modellers from the start of the incident t0.
These will be a part of the routine delivery to the system. These might include such features as
the rainfall intensity, whether or not flood water has reached the given site s and its depth at a
given time t.

The second, feature, vector time series {xe
t (j) : t = t0, t1, . . .} involves other descriptors of the

incident which are exogenous to the particular incident but from the BN can be seen to have
implications about whether or not a might fail. These include features like the time of day and
season of the incident, whether there are road works locally or maintenance regimes happening
at connected sites.

For each incident j Now let xt(j) ≜
(
xs
t (j),x

i
t(j),x

e
t (j)

)
and let xT∗

(j) up to a time T ∗ denote
the vector of inputs that will inform the development of the failure event at time T of a given
asset on a site, where T is the time a snapshot of the system is taken. Not that for a real time
decision support system we must set T ∗ ≤ T but for planning we can follow a simulated scenario
to its endpoint, provided the functionality of the assets do not affect the spread of the flood or the
surrounding weather.

Then - directly from the validity of the BN G - we have that
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P (FT (a) = 1|xT∗
(j)) =

∑
y1,T (a),y2,T (a),...ym−1,T (a)

{
m∏

k=1

p(yk,T (a)|zk,T (a),x
T∗

(j))

}
(3)

where p(yk,T (a)|zk,T (a),x
T∗

(j)), k = 1, 2, . . . ,m denotes the conditional probability tables elicited
from the asset owners. Note here that in practice although p(yk,T (a)|zk,T (a),x

T∗
(j)) could de-

pend very generally on xT∗
(j) in practice it will only depend on a few simple functions of this

vector and in some cases be independent of it entirely.

So we see here that the probabilities that the elicitation module needs to deliver are simply those
in (3), and that these are a simple function of the conditional probability tables{

p(yk,T (a)|zk,T (a),x
T∗

(j)), k = 1, 2, . . . ,m
}

constructed by the Bayesian elicitation team as a function of delivered modeling inputs and elicted
expert judgements concerning asset failure. So (3) provides us with an explicit transfer function
to feed into the model to determine whether or not a particular asset is working at time T.
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B Appendix: Briefing document for the prob-
ability elicitation

This Appendix has been edited from the original text of the briefing document to remove confi-
dential information.

Introduction
Thank you for agreeing to take part in the probability elicitation. You will be asked to make
judgements regarding the likelihood of certain events which could contribute to the failure of the
asset in a hypothetical future flooding scenario.

The elicited values will be used as part of the proof of concept for the digital twin developed in
the CReDo project. In particular, the values will help us to calibrate the failure probabilities in the
scenarios that are being used to demonstrate the digital twin. When reporting the results of this
exercise all judgements will be anonymised appropriately (which may be different for internal and
external use).

You will be asked to make judgements regarding a number of quantities of interest, provided
below.

The scenario we consider
A 48 hour warning of a convective storm surge is given during the summer. This is predicted to
last for up to 23 hours with higher peak intensity around the centre of the storm. This will occur
when there is an above average high astronomical tide and sea level rise due to climate change.
It is predicted that this occurs concurrently with associated wave overtopping of coastal flood
defences and high tide in the river. There is a risk that the level of the river will be sufficiently high
to threaten overtopping, although it is unlikely to be overtopped in the 23 hour period.

We are interested in the threat to the asset. EA flood information is made available only after the
incident has happened.

Quantities of interest
In the elicitation you will be asked about probabilities of certain events of interest, including condi-
tional probabilities such as that of a failure given that water has overtopped the defensive barrier.
Where relevant we will consider different flood depths in the vicinity of the pumping station. These
are:

(a) between 0mm and 500mm,
(b) between 500mm and 900mm,
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(c) above 900mm.

Elicitation questions
For each of the quantities of interest above, you will be asked for your assessment of the proba-
bility. This will be your subjective judgement of how likely the event is to happen in the scenario.
To help you think about this, you could compare the event to events with well-known probabilities,
e.g., do I think this event is more or less likely than getting a head when flipping a coin (probability
1/2) or rolling a six with a dice (probability 1/6).

This means that, given your unique knowledge and experience, your probability is likely to be
different to those of your colleagues. This is natural, and does not mean that anyone is wrong.
These are one-off events and our knowledge of what would happen during them is imperfect.

Once you have provided your probability we will show you the range of probabilities from all
of the experts. This will be used to have a short discussion about the values chosen and the
considerations that led to these. Following this we will ask for a probability for the event from
the group. This is known as a consensus probability. To come to this probability we ask you to
imagine that an impartial observer has been present for the elicitation and discussion, but did not
come into the session with their own views. What probability would they assign to the event?

Format of the Elicitation Session
The elicitation session will take place via Teams. It will be facilitated by Kevin Wilson, assisted
by Jim Smith, and notes will be taken by Jim Smith and Chris Dent. Sarah Hayes and Benjamin
Mawdsley will observe the session, but not participate.

In the session, Kevin will review the information contained in this document and then elicit your
probabilities, first for a training question to illustrate the approach, and then for the quantities of
interest above.

We are also interested in the rationale for the numbers you provide, and hence the session will
be recorded, with your permission.

There will be time to ask any questions you have during the session.

The session will take no longer than two hours, with a break in the middle.
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